5 resultados para technological diffusion
em Brock University, Canada
Resumo:
We examined three different algorithms used in diffusion Monte Carlo (DMC) to study their precisions and accuracies in predicting properties of isolated atoms, which are H atom ground state, Be atom ground state and H atom first excited state. All three algorithms — basic DMC, minimal stochastic reconfiguration DMC, and pure DMC, each with future-walking, are successfully impletmented in ground state energy and simple moments calculations with satisfactory results. Pure diffusion Monte Carlo with future-walking algorithm is proven to be the simplest approach with the least variance. Polarizabilities for Be atom ground state and H atom first excited state are not satisfactorily estimated in the infinitesimal differentiation approach. Likewise, an approach using the finite field approximation with an unperturbed wavefunction for the latter system also fails. However, accurate estimations for the a-polarizabilities are obtained by using wavefunctions that come from the time-independent perturbation theory. This suggests the flaw in our approach to polarizability estimation for these difficult cases rests with our having assumed the trial function is unaffected by infinitesimal perturbations in the Hamiltonian.
Resumo:
This qualitative narrative inquiry was driven by my desire to further explore my personal discovery that my utilization of educational technologies in teaching and learning environments seemed to heighten a sense of creativity, which in turn increased reflective practice and authenticity in my teaching. A narrative inquiry approach was used as it offered the opportunity to uncover the deeper meanings of authenticity and reflection as participants' personal experiences were coconstructed and reconstructed in relationship with me and in relationship to a social milieu. To gain further insight into this potential phenomenon, I engaged in 2 conversational interviews with 2 other teachers from an Ontario College in a large urban centre who have utilized educational technologies in their teaching and learning communities and I maintained a research journal, constructed during the interview process, to record my own emerging narrative accounts, reflections, insights and further questions. The field texts consisted of transcriptions of the interviews and my reflective journal. Research texts were developed as field texts were listened to multiple times and texts were examined for meanings and themes. The educational technologies that both women focused on in the interview were digital video of children as they play, learn and develop and the use of an audible teacher voice in online courses. The invitation given to students to explore and discover meaning in videos of children as they watched them with the teacher seemed to be a catalyst for authenticity and a sense of synergy in the classroom. The power of the audible teacher voice came through as an essential component in online learning environments to offer students a sense of humanness and connection with the teacher. Relationships in both online and face to face classrooms emerged as a necessary and central component to all teaching and learning communities. The theme of paradox also emerged as participants recognized that educational technologies can be used in ways that enhance creativity, authenticity, reflection and relationships or in ways that hinder these qualities in the teaching and learning community. Knowledge of the common experiences of college educators who utilize educational technologies, specifically digital video of children to educate early childhood educators, might give meaning and insight to inform the practice of other teachers who seek authentic, reflexive practice in the classroom and in on line environments.
Resumo:
The diffusion of Co60 in the body centered cubic beta phase of a ZrSOTi SO alloy has been studied at 900°, 1200°, and 1440°C. The results confirm earlier unpublished data obtained by Kidson17 • The temperature dependence of the diffusion coefficient is unusual and suggests that at least two and possibly three mechanisms may be operative Annealing of the specimen in the high B.C.C. region prior to the deposition of the tracer results in a large reduction in the diffusion coefficient. The possible significance of this effect is discussed in terms of rapid transport along dislocation network.
Resumo:
Our objective is to develop a diffusion Monte Carlo (DMC) algorithm to estimate the exact expectation values, ($o|^|^o), of multiplicative operators, such as polarizabilities and high-order hyperpolarizabilities, for isolated atoms and molecules. The existing forward-walking pure diffusion Monte Carlo (FW-PDMC) algorithm which attempts this has a serious bias. On the other hand, the DMC algorithm with minimal stochastic reconfiguration provides unbiased estimates of the energies, but the expectation values ($o|^|^) are contaminated by ^, an user specified, approximate wave function, when A does not commute with the Hamiltonian. We modified the latter algorithm to obtain the exact expectation values for these operators, while at the same time eliminating the bias. To compare the efficiency of FW-PDMC and the modified DMC algorithms we calculated simple properties of the H atom, such as various functions of coordinates and polarizabilities. Using three non-exact wave functions, one of moderate quality and the others very crude, in each case the results are within statistical error of the exact values.