4 resultados para suppression of Fermi acceleration

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of 2-chlorobenzophenones, containing electron releasing groups (e.g. hydroxy, thiomethoxy and methoxy) in the 4' - position, were prepared by the Friess rearrangement, or the Friedel-Crafts reaction. These ketones, when treated with potassamide in liquid ammonia, underwent partial Haller-Bauer scission, unlike 2-chlorobenzophenone which is known to undergo complete scission. Under similar conditions 4-nitrobenzophenone also underwent partial scission, but the main reaction in this case was nucleophilic amination of the nitro containing ring. This amination reaction was shown not to be a useful general reaction for aromatic nitro compounds. 3-Methylxanthone was then prepared by treatment of 2- and 3- chloro-2'-hydroxy-5'-methylbenzophenone with . little, if any, attendant scission. The corresponding 2fluoro- compound also gave the xanthone, but as the 3-fluoro compound did not, it was concluded that the 2-fluoro compound reacted through a nucleophilic substitution mechanism, rather than the benzyne mechanism invoked for the chloro and bromo compounds. 3-Methylthioxanthone was synthesised by treatment of methyl 4-tolyl sulphide and 2-chlorobenzoyl chloride with aluminum chloride in carbon disu1phide, followed.by heating. This compound was also prepared by treatment of 3-chloro-2'thiomethoxy- 5'-methylbenzophenone with potassamide in liquid ammonia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the study was to investigate the effect of skate blade radius of hollow (ROH) on anaerobic performance, specifically during the acceleration and stopping phases of an on-ice skating test. Fifteen, male Junior B hockey players (mean age 19 y ± 1.46) were recruited to participate. On-icc testing required each participant to complete an on-ice anaerobic performance test [Reed Repeat Skate (RRS)) on three separate days. During each on-ice test, the participant's skate blades were sharpened to one of three, randomly assigned, ROH values (0.63 cm, 1.27 cm, 1.90 cm). Performance times were recorded during each RRS and used to calculate anaerobic variables [anaerobic power (W), anaerobic capacity (W), and fatigue index (s, %)). Each RRS was video recorded for the purpose of motion analysis. Video footage was imported into Peak Motus™ to measure kinematic variables of the acceleration and stopping phases. The specific variables calculated from the acceleration phase were: average velocity over 6 m (m/s), average stride length (m), and mean stride rate (strides/s). The specific variables calculated from the stopping phase were: velocity at initiation of stopping (rn/s), stopping distance (m), stopping time (s). A repeated measures ANOV A was used to assess differences in mean performance and kinematic variables across the three selected hollows. Further analysis was conducted to assess differences in trial by trial performance and kinematic variables for all hollows. The primary findings of the study suggested that skate blade ROH can have a significant effect on kinematic variables, namely stride length and stride rate during the acceleration phase and stopping distance and stopping time during the stopping phase of an on-ice anaerobic performance test. During the acceleration phase, no significant difdifferences were found in SR and SL across the three selected hollows. Mean SR on the 1.27 cm hollow was significantly slower than both the 0.63 cm and 1.90 cm hollows and SL was significantly longer when skating on the 1.27 cm hollow in comparison to the 1.90 cm hollow. During the stopping phase, stopping distance on the 0.63 cm hollow (4.12 m ± 0.14) was significantly shorter than both the 1.27 cm hollow (4.43 m ± 0.08) (p < 0.05) and the 1.90 cm ho])ow (4.35 m ± 0.12) (p < 0.05). Mean ST was also significantly shorter when stopping on the 0.63 cm hollow then both the 1.27 cm and 1.90 cm hollows. Trial by trial results clearly illustrated the affect of fatigue on kinematic variables; AV, SR, IV decreased from trial 1 to 6. There was no significant effect on anaerobic performance variables during the RRS. Altering the skate blade ROH has a significant and practical affect on accelerating and stopping performance will be discussed in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The superconducting transition temperature Tc of metallic glasses ZrxFelOO-x (x=80, 75), Zr75(NixFelOO-x)25 (x=75, 50, 25), and CU2SZr75 were measured under quasi-hydrostatic pressure up to 8 OPa (80kbar). The volume (pressure) dependence of the electron-phonon coupling parameters Aep for CU25Zr75 was calculated using the McMillan equatio11. Using this volume dependence of Aep and the modified McMillan equation which incorporates spin-fluctuations, the volume dependence of the spin fluctuation parameter, Asf, was determined in Zr75Ni25, ZrxFelOO-x , a11d Zr75(NixFelOO-x)25. It was found that with increasing pressure, spinfluctuations are suppressed at a faster rate in ZrxFe lOO-x and Zr75(NixFelOO-x)25, as Fe concentration is increased. The rate of suppression of spin-fluctuations with pressure was also found to be higher in Fe-Zr glasses than in Ni-Zr glasses of similar composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plant family Apocynaceae accumulates thousands of monoterpene indole alkaloids (MIAs) which originate, biosynthetically, from the common secoiridoid intermediate, strictosidine, that is formed from the condensation of tryptophan and secologanin molecules. MIAs demonstrate remarkable structural diversity and have pharmaceutically valuable biological activities. For example; a subunit of the potent anti-neoplastic molecules vincristine and vinblastine is the aspidosperma alkaloid, vindoline. Vindoline accumulates to trace levels under natural conditions. Research programs have determined that there is significant developmental and light regulation involved in the biosynthesis of this MIA. Furthermore, the biosynthetic pathway leading to vindoline is split among at least five independent cell types. Little is known of how intermediates are shuttled between these cell types. The late stage events in vindoline biosynthesis involve six enzymatic steps from tabersonine. The fourth biochemical step, in this pathway, is an indole N-methylation performed by a recently identified N-methyltransfearse (NMT). For almost twenty years the gene encoding this NMT had eluded discovery; however, in 2010 Liscombe et al. reported the identification of a γ-tocopherol C-methyltransferase homologue capable of indole N-methylating 2,3-dihydrotabersonine and Virus Induced Gene Silencing (VIGS) suppression of the messenger has since proven its involvement in vindoline biosynthesis. Recent large scale sequencing initiatives, performed on non-model medicinal plant transcriptomes, has permitted identification of candidate genes, presumably involved, in MIA biosynthesis never seen before in plant specialized metabolism research. Probing the transcriptome assemblies of Catharanthus roseus (L.)G.Don, Vinca minor L., Rauwolfia serpentine (L.)Benth ex Kurz, Tabernaemontana elegans, and Amsonia hubrichtii, with the nucleotide sequence of the N-methyltransferase involved in vindoline biosynthesis, revealed eight new homologous methyltransferases. This thesis describes the identification, molecular cloning, recombinant expression and biochemical characterization of two picrinine NMTs, one from V. minor and one from R. serpentina, a perivine NMT from C. roseus, and an ajmaline NMT from R. serpentina. While these TLMTs were expressed and functional in planta, they were active at relatively low levels and their N-methylated alkaloid products were not apparent our from alkaloid isolates of the plants. It appears that, for the most part, these TLMTs, participate in apparently silent biochemical pathways, awaiting the appropriate developmental and environmental cues for activity.