2 resultados para supply chain vs. supply chain competion
em Brock University, Canada
Resumo:
In this thesis, I focus on supply chain risk related ambiguity, which represents the ambiguities firms exhibit in recognizing, assessing, and responding to supply chain disruptions. I, primarily, argue that ambiguities associated with recognizing and responding to supply chain risk are information gathering and processing problems. Guided by the theoretical perspective of bounded rationality, I propose a typology of supply chain risk related ambiguity with four distinct dimensions. I, also, argue that the major contributor to risk related ambiguity is often the environment, specifically the web of suppliers. Hence, I focus on the characteristics of these supplier networks to examine the sources of ambiguity. I define three distinct elements of network embeddedness – relational, structural, and positional embeddedness – and argue that the ambiguity faced by a firm in appropriately identifying the nature or impacts of major disruptions is a function of these network properties. Based on a survey of large North American manufacturing firms, I found that the extent of the relational ties a firm has and its position in the network are significantly related to supply chain risk related ambiguity. However, this study did not provide any significant support for the hypothesized relationship between structural embeddedness and ambiguity. My research contributes towards the study of supply chain disruptions by using the idea of bounded rationality to understand supply chain risk related ambiguity and by providing evidence that the structure of supply chain networks influences the organizational understanding of and responses to supply chain disruptions.
Resumo:
ABSTRACT The myosm regulatory light chain (RLC) of type II fibres is phosphorylated by Ca2+ -calmodulin dependent myosin light chain kinase (skMLCK) during muscular activation. The purpose of this study was to explore the effect of skMLCK gene ablation on the fatigability of mouse skeletal muscles during repetitive stimulation. The absence of myosin RLC phosphorylation in skMLCK knockout muscles attenuated contractile performance without a significant metabolic cost. Twitch force was potentiated to a greater extent in wildtype muscles until peak force had diminished to ~60% of baseline (37.2 ± 0.05% vs. 14.3 ± 0.02%). Despite no difference in peak force (Po) and shortening velocity (Vo), rate of force development (+dP/dt) and shortening-induced deactivation (SID) were almost two-fold greater in WT muscles. The present results demonstrate that myosin RLC phosphorylation may improve contractile performance during fatigue; providing a contractile advantage to working muscles and protecting against progressive fatigue.