5 resultados para soy lecithin
em Brock University, Canada
Resumo:
It is well accepted that structural studies with model membranes are of considerable value in understanding the structure of biological membranes. Many studies with models of pure phospholipids have been done; but the effects of divalent cations and protein on these models would make these studies more applicable to intact membrane. The present study, performed with above view, is a structural analysis of divalent io~cardio1ipin complexes using the technique of x-ray diffraction. Cardiolipin, precipitated from dilute solution by divalent ionscalcium, magnesium and barium, contains little water and the structure formed is similar to the structure of pure cardiolipin with low water content. The calcium-cardiolipin complex forms a pure hexagonal type II phase that exists from 40 to 400 C. The molar ratio of calcium and cardiolipin in the complex is 1 : 1. Cardiolipin, precipitated with magnesium and barium forms two co-existing phases, lamellar and hexagonal, the relative quantity of the two phases being dependent on temperature. The hexagonal phase type II consisting of water filled channels formed by adding calcium to cardiolipin may have a remarkable permeability property in intact membrane. Pure cardiolipin and insulin at pH 3.0 and 4.0 precipitate but form no organised structure. Lecithin/cardiolipin and insulin precipitated at pH 3.0 give a pure lamellar phase. As the lecithin/cardiolipin molar ratio changes from 93/7 to SO/50, (a) the repeat distance of the lamellar changes from 72.8 X to 68.2 A; (b) the amount of protein bound increases in such a way that cardiolipin/insulin molar ratio in the complex reaches a maximum constant value at lecithin/cardiolipin molar ratio 70/30. A structural model based on these data shows that the molecular arrangement of lipid and protein is a lipid bilayer coated with protein molecules. The lipid-protein interaction is chiefly electrostatic and little, if any, hydrophobic bonding occurs in this particular system. So, the proposed model is essentially the same as Davson-Daniellifs model of biological membrane.
Resumo:
Phospholipids in water form lamellar phases made up of alternating layers of water and bimolecular lipid leaflets. Three complementary methods, osmotic, mechanical, and vapour pressures, were used to measure the work of removing water from lamellar phases composed of frozen dipalmitoylphosphatidylcholine ( DPPC ), melted DPPC, egg phosphatidylethanolamine or equimolar mixtures of DPPC and cholesterol ( DPPC/CHOL ), Concurrently the structural changes that resulted from this water removal were measured using X-ray diffraction. The work was divided into that which forces the bilayers together ( F ) and that which compresses the molecules together within the bilayers ( F )# A large repulsive force exists between bilayers composed of each of the lipids studied and this force increases exponentially as bilayer separation is decreased. F is affected by the nature of the head groups, conformation of the acyl chains and heterogeneity of these chains. In general all of the melted phosphatidylcholines ( melted DPPC, egg lecithin and DPPC/CHOL ) have large equilibrium separations in excess water resulting from large repulsive hydration forces between these bilayers. By comparison, egg PE has an increased attractive force, and frozen DPPC has a decreased hydration force; each results in smaller separations in water for these two lipids. The chemical potentials of the water between the bilayers for all these lipids lie on a continuum, indicating that interbilayer water cannot be characterized by two discrete states, usually referred to as "bound" or "non**bound". For all lipids studied a maximum of 25 % of the total work done on the system goes into deforming the bilayers. The method used here viii to separate repulsion from deformation, developed for us by v. A. Parsegian, provides a unique method for the measurement of lateral pressure of a bilayer and its modulus of deformability ( Y ). Lateral pressure is affected by the nature of the head group, conformation and heterogeneity of the acyl chains. For small changes in molecular surface area ( A ) near equilibrium, both melted and frozen DPPC have similar values for the deformability modulus. Thus in this regime it requires about the same force to change the angle of tilt of frozen chains as it does to compress the fluid bilayer. The introduction of cholesterol into bilayers of DPPC reduces dramatically the lateral pressure of the bilayers over a large range of molecular surface areas ( A ). The variation in the magnitude of bilayer repulsion with different phospholipids provides a basis for the mechanism of lipid segregation in mixed lipid systems and suggests that interacting heterogeneous membranes may influence or modulate the composition of the opposing membrane. The measurements of deformabilities of bilayers provides a direct comparison of them with the properties of monolayers.
Resumo:
Electrostatic forces between membranes containing charged lipids were assumed to play an important role in influencing interactions between membranes long before quantitative measurements of such forces were available. ~ur measurements were designed to measure electrostatic forces between layers of lecithin charged with lipi~s carrying ionizable head groups. These experiments have shown that the interactions between charged lipid bila.yere are dominated by electrostatic forces only at separations greater than 30 A. At smaller separations the repulsion between charged bilayers is dominated by strong hydration forces. The net repulsive force between egg lecithin bilayers containing various amounts of cherged lipids (phosphatidylglycerol (PG) 5,10 ano 50 mole%, phosphatidyli. nosi tol (PI) 10 mole% and sodium oleate (Na-Ol) 3,5 and 10 mole%, where mole% gives the ratio of the number of moles' of .charged lipid to the total number of moles of all lipids present in the sample) was stuoied with the help ('If the osmotic streas technique described by LeNeveu et aI, (1977). Also, the forces between pure PG were j_nvestigated in the same manner. The results have been plotted showing variation of force as a function of bilay- _ er separation dw• All curVes 90 obtained called force curves, were found to be similar in sha.pe, showing two distinct regions, one when dw<.30 A is a region cf very rapid iiivariation of force with separation ( it is the region dominated by hydre,tion force) and second when dw> 40 A is a region of very slow variation of force with separB.tion ( it is the region dominated by the electrostatic force). Between these two regions there exists a transition area in which, in most systems studied, a phase separation of lipids into fractions containing different amounts of charged groups, was observed. A qualitative analysis showed that our results were v/ell described by the simple electrostatic double -le.yer theory. For quantitative agreement between measured and calculated force curves however, the charge density for the calculations had to be taken as half of that given by the number density of charged lipids present in the lecithin bilayers. It is not clear at the moment what causes such low apparent degree of ionization among the charged head groups, and further study is needed in this area.
Resumo:
Exposure to isoflavones (ISO), abundant in soy protein infant formula, for the first 5 days of life results in higher bone mineral density (BMD),greater trabecular connectivity and higher fracture load of lumbar vertebrae (LV) at adulthood. The effect of lengthening the duration of exposure to ISO on bone development has not been studied. This study determined if providing ISO for the first 21 days of life, which more closely mimics the duration that infants are fed soy protein formula, results in higher BMD, improved bone structure and greater strength in femurs and LV than a 5-day protocol. Female CD-1 mice were randomized to subcutaneous injections of ISO (7 Q1 mg kg/body weight/day) or corn oil from postnatal day 1 to 21. BMD, structure and strength were measured at the femur and LV at 4 months of age, representing young Q2 adulthood. At the LV, exposure to ISO resulted in higher (P,0.05) BMD, trabecular connectivity and fracture load compared with control (CON). Exposure to ISO also resulted in higher (P,0.05) whole femur BMD, higher (P,0.05) bone volume/total volume and Q3 lower (P,0.05) trabecular separation at the femur neck, as well as greater (P,0.05) fracture load at femur midpoint and femur neck compared with the CON group. Exposure to ISO throughout suckling has favorable effects on LV outcomes, and, unlike previous studies using 5-day exposure to ISO, femur outcomes are also improved. Duration of exposure should be considered when using the CD-1 mouse to model the effect of early life exposure of infants to ISO.
Resumo:
In mice, exposure to isoflavones (ISO), abundant in soy infant formula, during the first 5 d of life alters structural and functional development of reproductive organs. Effects of longer exposures are unknown. The study objective was to evaluate whether exposure to a combination of daidzein and genistein in the first 10 compared to 5 d of life results in greater adverse effects on ovarian and uterine structure in adult mice. Thirteen litters of 8–12 pups were cross-fostered and randomized to corn oil or ISO (2 mg daidzein + 5 mg genistein/kg body weight/d) for the first 5 or 10 d of life. The 10-d protocol mimicked the period when infants are fed soy protein formula (SPF) but avoids the time when suckling pups can consume the mother’s diet. Body and organ weights and histology of ovaries and uteri were analyzed. There were no differences in the ovary or uterus weight, number of ovarian follicles, number of multiple oocyte follicles, or percent of ovarian cysts with 5 or 10 d of ISO intervention compared to respective controls. The 10-d ISO group had higher body weights from 6 d to 4 mo. of age and a higher percent of hyperplasia in the oviduct than the respective control. Lower numbers of ovarian corpus lutea and a higher incidence of abnormal changes were reported in the uteri of both ISO groups compared to their respective controls. Five- and 10-d exposure to ISO had similar long-lasting adverse effects on the structures of ovaries and uterus in adult mice. Only the 10-d ISO exposure resulted in greater body weight gain at adulthood.