6 resultados para solid-state nuclear magnetic resonance

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A survey of predominantly industrial silicon carbide has been carried out using Magic Angle Spinning nuclear magnetic resonance (MAS nmr); a solid state technique. Three silicon carbide polytypes were studied; 3C, 6H, and 15R. The 13C and 29 Si MAS nmr spectra of the bulk SiC sample was identified on the basis of silicon (carbon) site type in the d iff ere n t pol Y t Y pes • Out to 5.00 A fro mac en t r a lsi 1 i con (0 r carbon) atom four types of sites were characterized using symmetry based calculations. This method of polytype analysis was also considered, in the prelminary stages, for applications with other polytypic material; CdBr 2 , CdI 2 , and PbI 2 " In an attempt to understand the minor components of silicon carbide, such as its surface, some samples were hydrofluoric acid washed and heated to extreme temperatures. Basically, an HF removable species which absorbs at -110 ppm (Si0 2 ) in the 29 Si MAS nmr spectrum is found in silicon carbide after heating. Other unidentified peaks observed at short recycle delays in some 29 Si MAS nmr spectra are considered to be impurities that may be within the lattice. These components comprise less than 5% of the observable silicon. A Tl study was carried out for 29 Si nuclei in a 3C ii polytype sample, using the Driven Equilibrium Single-Pulse Observation of T1 (DESPOT) technique. It appears as though there are a number of nuclei that have the same chemical shift but different T1 relaxation times. The T1 values range from 30 seconds to 11 minutes. Caution has to be kept when interpreting these results because this is the first time that DESPOT has been used for solid samples and it is not likely in full working order. MAS nmr indicates that the 13C and 29 Si ~sotropic chemical shifts of silicon carbide appear to have a reciprocal type of relationship_ Single crystal nmr analysis of a 6H sample is accordance with this finding when only the resultant isotropic shift is considered. However, single crystal nmr also shows that the actual response of the silicon and carbon nuclear environment to the applied magnetic field at various angles is not at all reciprocal. Such results show that much more single crystal nmr work is required to determine the actual behavior of the local magnetic environment of the SiC nuclei.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron tribalide complexes of 1,1-bis(dimethylamino)ethylene (DME) , t etramethylurea (TMU), tetramethylguanidine (TMG) , and pentamethylguanidine (PMG) and also mixed boron t r ihalide adducts of DME have been investigated by 1H and 19F NMR spectroscopy. Both nitrogen and the C-Q-H carbon of DME are possible donor a toms to boron trihal ides but complexation has been found to occur only at carbon of DME. The initial adduct acts as a Bronsted acid and gives up a proton to free DME in solut ion. A side reaction in the DME-BF, system gives rise to trace amounts of a complex aSSigned as (DME)2BF2+. (DME)2BF2+ is produced in much larger quantities in t he DME-BF3-BC13 and DME-BF,-BBr, systems by reaction of free DME with DME:BF2X (X = Cl, Br). Restricted r otation about the C-N bonds of TMUlBC13 and n1U:BBr3 has been observed at low temperatures. This complements previous work in this system and confirms oxygen donation of TMU to boron trihalides . Restricted rotation at low temperatures also has been observed in DMEboron trihalide systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid state nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for studying structural and dynamical properties of disordered and partially ordered materials, such as glasses, polymers, liquid crystals, and biological materials. In particular, twodimensional( 2D) NMR methods such as ^^C-^^C correlation spectroscopy under the magicangle- spinning (MAS) conditions have been used to measure structural constraints on the secondary structure of proteins and polypeptides. Amyloid fibrils implicated in a broad class of diseases such as Alzheimer's are known to contain a particular repeating structural motif, called a /5-sheet. However, the details of such structures are poorly understood, primarily because the structural constraints extracted from the 2D NMR data in the form of the so-called Ramachandran (backbone torsion) angle distributions, g{^,'4)), are strongly model-dependent. Inverse theory methods are used to extract Ramachandran angle distributions from a set of 2D MAS and constant-time double-quantum-filtered dipolar recoupling (CTDQFD) data. This is a vastly underdetermined problem, and the stability of the inverse mapping is problematic. Tikhonov regularization is a well-known method of improving the stability of the inverse; in this work it is extended to use a new regularization functional based on the Laplacian rather than on the norm of the function itself. In this way, one makes use of the inherently two-dimensional nature of the underlying Ramachandran maps. In addition, a modification of the existing numerical procedure is performed, as appropriate for an underdetermined inverse problem. Stability of the algorithm with respect to the signal-to-noise (S/N) ratio is examined using a simulated data set. The results show excellent convergence to the true angle distribution function g{(j),ii) for the S/N ratio above 100.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation of chelated difluoroboron cations (DD)BF2+, where DD is a saturated polydentate tertiary-amine or polydentate aromatic ligand, has been systematically studied by using multinuclear solution and solid state nuclear magnetic resonance spectroscopy and fast atom bombardment mass spectrometry. Three new methods of synthesis of (DD)BF2+ cations are reported, and compared with the previous method of reacting a chelating donor with Et20.BF3. The methods most effective for aromatic donors such as 1,1O-phenanthroline are ineffective for saturated polydentate tertiary-amines like N,N,N' ,Nil ,Nil-pentamethyldiethylenetriamine. Polydentate tertiary-amine donors that form 5-membered rings upon bidentate chelation were found to chelate effectively when the BF2 source contained two leaving groups (a heavy halide and a Lewis base such as pyridine =pyr or isoxazole =ISOX), i.e., pyr.BF2X (X = CI or Br), ISOX.BF2X and (pyr)2BF2+. Those that would form 6membered rings upon chelation do not chelate by any of the four methods. Polydentate aromatic ligands chelate effectively when the BF2 source contained a weak Lewis base, e.g., ISOX.BF3, ISOX.BF2X and Et20.BF3. Bidentate chelation by polydentate tertiaryamine and aromatic donors leads to nmr parameters that are significantly different then their (D)2BF2+ relatives (D =monod~ntate t-amines or pyridines). The chelated haloboron cations (DD)BFCI+, and (DD)BFBr+ were generated from D.BFX2 adducts for all ligands that form BF2+ cations above. In addition, the (DD)BCI2+ and (DD)BBr2+ cations were formed from D.BX3 adducts by the chelating aromatic ligands, except for the aromatic ligand 1,8-bis(dimethylamino)naphthalene, which formed only the (DD)BF2+ cation, apparently due to its extreme steric hindrance. Chelation by a donor is a two-step reaction. For polydentate tertiary-amine ligands, the two rates appear to be very dependent on the two possible leaving groups on the central boron atom. The order of increasing ease of displacement for the donors was: pyr < Cl < Br < ISOX. The rate of chelation by polydentate aromatic ligands appears to be dependent on the displacement of the first ligand from the boron. The order of increasing ease of displacement for the donors was: pyr < CI < ISOX ~ Br < Et20.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon carbide, which has many polytypic modifications of a very simple and very symmetric structure, is an excellent model system for exploring, the relationship between chemical shift, long-range dipolar shielding, and crystal structure in network solids. A simple McConnell equation treatment of bond anisotropy effects in a poly type predicts chemical shifts for silicon and carbon sites which agree well with the experiment, provided that contributions from bonds up to 100 A are included in the calculation. The calculated chemical shifts depend on three factors: the layer stacking sequence, electrical centre of gravity, and the spacings between silicon and carbon layers. The assignment of peaks to lattice sites is proved possible for three polytypes (6H, 15R, and 3C). The fact that the calculated chemical shifts are very sensitive to layer spacings provides us a potential way to detennine and refine a crystal structure. In this work, the layer spacings of 6H SiC have been calculated and are within X-ray standard deviations. Under this premise, the layer spacings of 15R have been detennined. 29Si and 13C single crystal nmr studies of 6H SiC polytype indicate that all silicons and carbons are magnetically anisotropic. The relationship between a magnetic shielding tensor component and layer spacings has been derived. The comparisons between experimental and semi-empirical chemical shielding tensor components indicate that the paramagnetic shielding of silicon should be included in the single crystal chemical shift calculation.