2 resultados para simultaneous determination

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple High Performance Liquid Chromatograph (HPLC) method has been developed to identify benamyl (methyl 1- (butylcarbamoyl)-2-benzimidazole carbamate) and MBC (methyl 2-benzimidazole carbamat~ residues on apple leaves without cleanup. Sample leaves are freeze dried in a Mason jar and residues are then extracted by tumbling them in chloroform containing 5,000 microgram per milliliter of n-propyl isocyanate (PIC) at 10 C. To the extract, n-butyl isocyanate (BIC) was added at 5,000 microgram per milliliter and 20 microliter of this mixture injected onto the HPLC system. Separation is accomplished by the use of a Brownlee LiChrosorb silica gel column with a guard column and' operated with a mixed mobile phase consisting of chloroform and hexane (4:1) saturated with water. MBC, a degradation product of benomyl is identified if present as methyl l-(npropyl carbamoyl)-2-benzimidazole carbamate (MBC-n-PIC). Both benomyl and MBC-n-PIC can be detected with aKUltraviolet (UV) detector (280nm) at a concentration as low as 0.2 microgram per milliliter in apple leaves. The fate of benomyl on apple foliage after spray application of benomyl (Ben late 50 per cent wettable powder) was investigated by the method thus described. Benomyl quickly dissipated during the first 3-7 days, but the dissipatio'n sltowed down thereafter. In contrast, the concentration of MBC in leaves gradually increased after repeated applications of Benlate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Second-rank tensor interactions, such as quadrupolar interactions between the spin- 1 deuterium nuclei and the electric field gradients created by chemical bonds, are affected by rapid random molecular motions that modulate the orientation of the molecule with respect to the external magnetic field. In biological and model membrane systems, where a distribution of dynamically averaged anisotropies (quadrupolar splittings, chemical shift anisotropies, etc.) is present and where, in addition, various parts of the sample may undergo a partial magnetic alignment, the numerical analysis of the resulting Nuclear Magnetic Resonance (NMR) spectra is a mathematically ill-posed problem. However, numerical methods (de-Pakeing, Tikhonov regularization) exist that allow for a simultaneous determination of both the anisotropy and orientational distributions. An additional complication arises when relaxation is taken into account. This work presents a method of obtaining the orientation dependence of the relaxation rates that can be used for the analysis of the molecular motions on a broad range of time scales. An arbitrary set of exponential decay rates is described by a three-term truncated Legendre polynomial expansion in the orientation dependence, as appropriate for a second-rank tensor interaction, and a linear approximation to the individual decay rates is made. Thus a severe numerical instability caused by the presence of noise in the experimental data is avoided. At the same time, enough flexibility in the inversion algorithm is retained to achieve a meaningful mapping from raw experimental data to a set of intermediate, model-free