1 resultado para shells of Calyptogena sp.
em Brock University, Canada
Resumo:
The dependence of the electron transfer (ET) rate on the Photosystem I (PSI) cofactor phylloquinone (A1) is studied by time-resolved absorbance and electron paramagnetic resonance (EPR) spectroscopy. Two active branches (A and B) of electron transfer converge to the FX cofactor from the A1A and A1B quinone. The work described in Chapter 5 investigates the single hydrogen bond from the amino acid residue PsaA-L722 backbone nitrogen to A1A for its effect on the electron transfer rate to FX. Room temperature transient EPR measurements show an increase in the rate for the A1A- to FX for the PsaA-L722T mutant and an increased hyperfine coupling to the 2-methyl group of A1A when compared to wild type. The Arrhenius plot of the A1A- to FX ET in the PsaA-L722T mutant suggests that the increased rate is probably the result of a slight change in the electronic coupling between A1A- and FX. The reasons for the non-Arrhenius behavior are discussed. The work discussed in Chapter 6 investigates the directionality of ET at low temperature by blocking ET to the iron-sulfur clusters FX, FA and FB in the menB deletion mutant strain of Synechocyctis sp. PCC 6803, which is unable to synthesize phylloquinone, by incorporating the high midpoint potential (49 mV vs SHE) 2,3-dichloro-1,4-naphthoquinone (Cl2NQ) into the A1A and A1B binding sites. Various EPR spectroscopic techniques were implemented to differentiate between the spectral features created from A and B- branch electron transfer. The implications of this result for the directionality of electron transfer in PS I are discussed. The work discussed in Chapter 7 was done to study the dependence of the heterogeneous ET at low temperature on A1 midpoint potential. The menB PSI mutant contains plastiquinone-9 in the A1 binding site. The solution midpoint potential of the quinone measures 100 mV more positive then wild-type phylloquinone. The irreversible ET to the terminal acceptors FA and FB at low temperature is not controlled by the forward step from A1 to FX as expected due to the thermodynamic differences of the A1 cofactor in the two active branches A and B. Alternatives for the ET heterogeneity are discussed.