2 resultados para sequential cropping
em Brock University, Canada
Resumo:
Narrative therapy is a postmodern therapy that takes the position that people create self-narratives to make sense of their experiences. To date, narrative therapy has compiled virtually no quantitative and very little qualitative research, leaving gaps in almost all areas of process and outcome. White (2006a), one of the therapy's founders, has recently utilized Vygotsky's (1934/1987) theories of the zone of proximal development (ZPD) and concept formation to describe the process of change in narrative therapy with children. In collaboration with the child client, the narrative therapist formalizes therapeutic concepts and submits them to increasing levels of generalization to create a ZPD. This study sought to determine whether the child's development proceeds through the stages of concept formation over the course of a session, and whether therapists' utterances scaffold this movement. A sequential analysis was used due to its unique ability to measure dynamic processes in social interactions. Stages of concept formation and scaffolding were coded over time. A hierarchical log-linear analysis was performed on the sequential data to develop a model of therapist scaffolding and child concept development. This was intended to determine what patterns occur and whether the stated intent of narrative therapy matches its actual process. In accordance with narrative therapy theory, the log-linear analysis produced a final model with interactions between therapist and child utterances, and between both therapist and child utterances and time. Specifically, the child and youth participants in therapy tended to respond to therapist scaffolding at the corresponding level of concept formation. Both children and youth and therapists also tended to move away from earlier and toward later stages of White's scaffolding conversations map as the therapy session advanced. These findings provide support for White's contention that narrative therapists promote child development by scaffolding child concept formation in therapy.
Resumo:
Flow injection analysis (FIA) was applied to the determination of both chloride ion and mercury in water. Conventional FIA was employed for the chloride study. Investigations of the Fe3 +/Hg(SCN)2/CI-,450 nm spectrophotometric system for chloride determination led to the discovery of an absorbance in the 250-260 nm region when Hg(SCN)2 and CI- are combined in solution, in the absence of iron(III). Employing an in-house FIA system, absorbance observed at 254 nm exhibited a linear relation from essentially 0 - 2000 Jlg ml- 1 injected chloride. This linear range spanning three orders of magnitude is superior to the Fe3+/Hg(SCN)2/CI- system currently employed by laboratories worldwide. The detection limit obtainable with the proposed method was determin~d to be 0.16 Jlg ml- 1 and the relative standard deviation was determined to be 3.5 % over the concentration range of 0-200 Jig ml- 1. Other halogen ions were found to interfere with chloride determination at 254 nm whereas cations did not interfere. This system was successfully applied to the determination of chloride ion in laboratory water. Sequential injection (SI)-FIA was employed for mercury determination in water with the PSA Galahad mercury amalgamation, and Merlin mercury fluorescence detection systems. Initial mercury in air determinations involved injections of mercury saturated air directly into the Galahad whereas mercury in water determinations involved solution delivery via peristaltic pump to a gas/liquid separator, after reduction by stannous chloride. A series of changes were made to the internal hardware and valving systems of the Galahad mercury preconcentrator. Sequential injection solution delivery replaced the continuous peristaltic pump system and computer control was implemented to control and integrate all aspects of solution delivery, sample preconcentration and signal processing. Detection limits currently obtainable with this system are 0.1 ng ml-1 HgO.