9 resultados para sensory attributes

em Brock University, Canada


Relevância:

70.00% 70.00%

Publicador:

Resumo:

I t was hypothesized that the freeze/thaw cycles endured by icewine grapes would change their chemical composition, resulting in unique chemical fingerprint and sensory properties, and would be affected by harvest date (HD) and crop level (CL). The objectives were: 1) to identify odour-active compounds using gas chromatographic and sensory analysis; 2) to determine the effect of CL and HD on these compounds; 3) to determine the icewine sensory profiles; 4) to correlate analytical and sensory results for an overall icewine profile. CharmAnalysis™ determined the Top 15 odour-potent compounds in Vidal and Riesling icewine and table wines; 24 and 23 compounds, respectively. The majority of the compounds had the highest concentrations in the icewines compared to table wines. These compounds were used as the foundation for assessing differences in icewine chemical profiles from different HD and CL. Vidal and Riesling icewine were made from grapes picked at different HD; HI : 19 December; H2: 29 December; H3: 18 January; H4: 11 February (Vidal only). HI wines differed from H3 and H4 wines in both Vidal and Riesling for aroma compounds and sensory profiles. - Three·CL [control (fully cropped), cluster thin at fruit set to one basal cluster/shoot (TFS), and cluster thin at veraison to one basal cluster/shoot (TV)] were evaluated for Riesling and Vidal cultivars over two seasons. Vidal icewines had the highest concentration of aroma compounds in the control and TV icewines in 2003 and in TFS icewines in 2004. In Riesling, most aroma compounds had the highest concentration in the TV icewines and the lowest concentration in the TFS wine for both years. The thinned treatments were associated with almost all of the sensory attributes in both cultivars, both years. HD and CL affected the chemical variables, aroma compounds and sensory properties of Vidal and Riesling icewines and freeze/thaw events changed their sensory profile. The most odour-potent compounds were p-damascenone, cis-rose oxide, 1- octen-3-ol, 4-vinylguaiacol, ethyl octanoate, and ethyl hexanoate. The role of Pdamascenone as a marker compound for icewine requires further investigation. This research provides a strong foundation for the understanding the odour-active volatiles and sensory profiles important to icewine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of viticultural and oenological treatments on fruit and wine composition of Chardonnay musque Study I: Effect ofveraison leafremoval and cluster thinning A one-year study was performed analysing die effects of leaf removal, cluster thinning, yeast strain selection, and enzyme usage on the chemical composition and sensory properties of Chardonnay musque wine. A number of substantial differences were found between treatments in °Brix, TA, pH, and in free and potentially volatile terpene concentrations. Greatest variations in sensory attributes were created however through use of different viticultural practices.Study II: Effect ofcluster thinning timing A two year study was conducted investigating the effect of cluster thinning timing, yeast strain selection, and enzyme usage on the chemical composition and sensory attributes of Chardonnay musque wine. Time of thinning was found to impact °BrLx, titratable acidit}% pH, and free and potentially volatile terpene concentrations, as well as, a number of yield parameters.Yeast strain selection and enzyme usage also impacted wine composition, andwas found to exhibit a greater effect on sensory properties than application of cluster thinning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

. The influence of vine water status was studied in commercial vineyard blocks of Vilis vinifera L. cv. Cabernet Franc in Niagara Peninsula, Ontario from 2005 to 2007. Vine performance, fruit composition and vine size of non-irrigated grapevines were compared within ten vineyard blocks containing different soil and vine water status. Results showed that within each vineyard block water status zones could be identified on GIS-generated maps using leaf water potential and soil moisture measurements. Some yield and fruit composition variables correlated with the intensity of vine water status. Chemical and descriptive sensory analysis was performed on nine (2005) and eight (2006) pairs of experimental wines to illustrate differences between wines made from high and low water status winegrapes at each vineyard block. Twelve trained judges evaluated six aroma and flavor (red fruit, black cherry, black current, black pepper, bell pepper, and green bean), thr~e mouthfeel (astringency, bitterness and acidity) sensory attributes as well as color intensity. Each pair of high and low water status wine was compared using t-test. In 2005, low water status (L WS) wines from Buis, Harbour Estate, Henry of Pelham (HOP), and Vieni had higher color intensity; those form Chateau des Charmes (CDC) had high black cherry flavor; those at RiefEstates were high in red fruit flavor and at those from George site was high in red fruit aroma. In 2006, low water status (L WS) wines from George, Cave Spring and Morrison sites were high in color intensity. L WS wines from CDC, George and Morrison were more intense in black cherry aroma; LWS wines from Hernder site were high in red fruit aroma and flavor. No significant differences were found from one year to the next between the wines produced from the same vineyard, indicating that the attributes of these wines were maintained almost constant despite markedly different conditions in 2005 and 2006 vintages. Partial ii Least Square (PLS) analysis showed that leaf \}' was associated with red fruit aroma and flavor, berry and wine color intensity, total phenols, Brix and anthocyanins while soil moisture was explained with acidity, green bean aroma and flavor as well as bell pepper aroma and flavor. In another study chemical and descriptive sensory analysis was conducted on nine (2005) and eight (2006) medium water status (MWS) experimental wines to illustrate differences that might support the sub-appellation system in Niagara. The judges evaluated the same aroma, flavor, and mouthfeel sensory attributes as well as color intensity. Data were analyzed using analysis of variance (ANOVA), principal component analysis (PCA) and discriminate analysis (DA). ANOV A of sensory data showed regional differences for all sensory attributes. In 2005, wines from CDC, HOP, and Hemder sites showed highest. r ed fruit aroma and flavor. Lakeshore and Niagara River sites (Harbour, Reif, George, and Buis) wines showed higher bell pepper and green bean aroma and flavor due to proximity to the large bodies of water and less heat unit accumulation. In 2006, all sensory attributes except black pepper aroma were different. PCA revealed that wines from HOP and CDC sites were higher in red fruit, black currant and black cherry aroma and flavor as well as black pepper flavor, while wines from Hemder, Morrison and George sites were high in green bean aroma and flavor. ANOV A of chemical data in 2005 indicated that hue, color intensity, and titratable acidity (TA) were different across the sites, while in 2006, hue, color intensity and ethanol were different across the sites. These data indicate that there is the likelihood of substantial chemical and sensory differences between clusters of sub-appellations within the Niagara Peninsula iii

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The major focus of this dissertation was to explain terroir effects that impact wine varietal character and to elucidate potential determinants of terroir by testing vine water status (VWS) as the major factor of the terroir effect. It was hypothesized that consistent water status zones could be identified within vineyard sites, and, that differences in vine performance, fruit composition and wine sensory attributes could be related to VWS. To test this hypothesis, ten commercial Riesling vineyards representative of each Vintners Quality Alliance sub-appellation were selected. Vineyards were delineated using global positioning systems and 75 to 80 sentinel vines per vineyard were geo-referenced for data collection. During the 2005 to 2007 growing seasons, VWS measurements [midday leaf water potential ('l')] were collected from a subset of these sentinel vines. Data were collected on soil texture and composition, soil moisture, vine performance (yield components, vine size) and fruit composition. These variables were mapped using global information system (GIS) software and relationships between them were elucidated. Vines were categorized into "low" and "high" water status regions within each vineyard block and replicate wines were made from each. Many geospatial patterns and relationships were spatially and temporally stable within vineyards. Leaf'l' was temporally stable within vineyards despite different weather conditions during each growing season. Generally, spatial relationships between 'l', soil moisture, vine size, berry weight and yield were stable from year to year. Leaf", impacted fruit composition in several vineyards. Through sorting tasks and multidimensional scaling, wines of similar VWS had similar sensory properties. Descriptive analysis further indicated that VWS impacted wine sensory profiles, with similar attributes being different for wines from different water status zones. Vineyard designation had an effect on wine profiles, with certain sensory and chemical attributes being associated from different subappellations. However, wines were generally grouped in terms of their regional designation ('Lakeshore', 'Bench', 'Plains') within the Niagara Peninsula. Through multivariate analyses, specific sensory attributes, viticulture and chemical variables were associated with wines of different VWS. Vine water status was a major contributor to the terroir effect, as it had a major impact on vine size, berry weight and wine sensory characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

My research permitted me to reexamine my recent evaluations of the Leaf Project given to the Foundation Year students during the fall semester of 1997. My personal description of the drawing curriculum formed part of the matrix of the Foundation Core Studies at the Ontario College of Art and Design. Research was based on the random selection of 1 8 students distributed over six of my teaching groups. The entire process included a representation of all grade levels. The intent of the research was to provide a pattern of alternative insights that could provide a more meaningful method of evaluation for visual learners in an art education setting. Visual methods of learning are indeed complex and involve the interplay of many sensory modalities of input. Using a qualitative method of research analysis, a series of queries were proposed into a structured matrix grid for seeking out possible and emerging patterns of learning. The grid provided for interrelated visual and linguistic analysis with emphasis in reflection and interconnectedness. Sensory-based modes of learning are currently being studied and discussed amongst educators as alternative approaches to learning. As patterns emerged from the research, it became apparent that a paradigm for evaluation would have to be a progressive profile of the learning that would take into account many of the different and evolving learning processes of the individual. A broader review of the student's entire development within the Foundation Year Program would have to have a shared evaluation through a cross section of representative faculty in the program. The results from the research were never intended to be conclusive. We realized from the start that sensory-based learning is a difficult process to evaluate from traditional standards used in education. The potential of such a process of inquiry permits the researcher to ask for a set of queries that might provide for a deeper form of evaluation unique to the students and their related learning environment. Only in this context can qualitative methods be used to profile their learning experiences in an expressive and meaningful manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first objective of this study was to identify appropriate sensory descriptors to assess the astringent sub-qualities of red wine. The influence of pH and ethanol on the sensation of astringency in red wine was evaluated, using a de-alcoholized red wine. A portion of the wine was adjusted to the pH values of 3.2, 3.4, 3.6 and 3.8, and another portion was adjusted to ethanol concentrations of 0%, 6%, 12%, and 15%. In addition, the pH 3.4 and 3.6 treatments were adjusted to an ethanol concentration of 12% and 15% all wines were then assessed sensorially and seventeen terms were identified, through panel discussion, to describe the mouth-feel and taste qualities: velvet, aggressive, silk/satin, dry, fleshy, unripe, pucker viscosity, abrasive, heat, chewy, acidity, grippy/adhesive, bitter, balance, overall astringency, and mouth-coat. Descriptive analysis profiling techniques were used to train the panel and measure the intensity of these attributes. It was found that decreasing pH values (averaged across all ethanol concentrations) showed an increase in the overall astringency of the wine. The combined treatments of ethanol and pH, real wine parameters (pH 3.4 and 3.6; 12% and 15% ethanol) did not have an effect on the perception of the astringent sub-qualities of the wine. A time intensity study was also included using the pH and ethanol adjusted wines, which showed that as the ethanol level of the wines increased so did the time to maximum intensity. The second objective was to identify appropriate sensory descriptors to evaluate the influence of grape maturity and maceration technique (grape skin contact) on the astringency sub-qualities of red vinifera wines from Niagara. The grapes were harvested across two dates, representing an early harvest and a late harvest. A portion of the Cabernet Sauvignon grapes wine was divided into three maceration treatments of oneweek maceration, standard two-week maceration, three-week maceration, and MCM. Another portion of both the early and late harvest Cabernet Sauvignon grapes were chaptalized to yield a final ethanol concentration of 14.5%. The wines were assessed sensorially and thirteen terms were identified, through panel discussion, to describe the mouth-feel and taste qualities: carbon dioxide, pucker, acidity, silk/chamois, dusty/chalky/powdery, sandpaper, numbing, grippy/adhesive, dry, mouthcoat, bitter, balance and, overall astringency. Descriptive analysis techniques were used to train the panel and measure the intensity of these attributes. The data revealed few significant differences in the mouth-feel of the wines with respect to maturity; which included differences in overall astringency and balance. There were varietal differences between Cabernet Sauvignon, Cabernet Franc, and Pinot Noir and differences for Cabernet Sauvignon wines due to the length and manner of maceration and as a result of chaptalization. Statistical analysis revealed a more complex mouth-feel for the Pinot Noir wines; and an increase in the intensity of the astringent sub-qualities as a result of the addition of sugar to the wines. These findings have implications for how processing decisions, such as optimum grape maturity and vinification methods may affect red wine quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Impact of the Multicolor Asian Lady Beetle (Harmonia axyridis) on Niagara Wine Quality The possible influence of Harmonia axyridis (the Multicolored Asian Lady Beetle) on the sensory properties of wine was investigated. H. axyridis beetles were added to white and red grape musts at a rate of 0, 1 or 10 per L, and a trained panel evaluated the finished wines using flavor-profiling techniques. Significant modification of both wine aroma and flavor characteristics were observed in the 10 beetlelL treatments, with smaller effects noted at the 1 beetlelL rate. Vinification in the presence of H. axyridis gave higher intensity scores for peanut, bell pepper and asparagus aromas and flavors in the white wines, and peanut, asparagus/bell pepper, and earthy/herbaceous aromas and flavors in the red wines. In addition, sweet, acid and bitter tastes were affected in red wines, and a general trend of decreasing fruit and floral intensities with increasing beetle rate was observed in both white and red wines. 15 ngIL Isopropylmethoxypyrazine was added to control wines and sensory profiles similar to high beetle treatments were obtained, supporting the hypothesis that methoxypyrazines from beetles are implicated in the taint. A trained panel evaluated the treated wines after 10 months of aging using the same sensory methods described above. Sensory profiles were very similar. Fennenting in the presence of Harmonia Axyridis (HA) had little influence on the chemical composition of the ftnished wine. The notable exception IS Isopropylmethoxypyrazine content, which was assessed usmg GC-MS analysis and showed increased concentration with increasing beetle nwnber for both white and red wmes. The influence of potential remedial treatments on the sensory properties of white and red wines tainted by Harmonia axyridis were also investigated. Bentonite, activated charcoal, oak chips, de-odorized oak chips, and UV or light irradiation were applied to tainted wine, and these wines evaluated chemically and sensorially. Both white and red wines treated with oak chips had strong oak characteristics, which masked the Harmonia axyridis-associated aroma and flavour attributes. In red wine, asparagus/bell pepper characteristics were decreased by bentonite and charcoal treatments. Only activated charcoal significantly decreased methoxypyrazine levels and only in white wine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dispersal polymorphism may exist in emigrants from cyclic populations of Microtus '~nnsylvanicus biasing trap-revealed movements of unenclosed animals in favour of sedentary or colonizing individuals. The dispersal tendency of emigrants from an enclosed population was investigated by releasing animals via tubes into one of two adjacent enclosures, one vacant and one inhabited. Individuals from the enclosed population were monitored for age, sex, weight and electrophoretically detectable serum transferrin genotype in an intensive live-trapping program. In 1973 the minimum number alive in the introduced enclosed study population reached approximately l67/ha when breeding stopped in October. In 1974 intensive breeding increased the population density to 333/ha by mid-July when a long decline in numbers and breeding intensity began without an intervening plateau. An adjacent unenclosed area had a much lower density and longer breeding season in 1974. The growth rate of young males in the enclosed population tended to be lowest during the decline period in 1974. Survival of the enclosed population was high throughout but was lowest during the decline phase in both sexes, especially males. Low transferrin heterozygote survival during the decline coincided with a significant heterozygote deficiency in females whereas in males genotype frequencies did not depart from Hardy-Weinberg equilibrium values throughout th.e study. Twenty-nine suitable ani.mals were released during the decline in five periods from July to November 1974. The proportions of males and transferrin heterozygotes in the released graun were generally greater than in the source population~ In the test enclosures 21% of the released animals continued their movement through the vacant area while 41% (no significant difference) moved through the inhabited enclosure. In the vacant test area, females had a greater tendency than males to continue dispersal whereas no difference was noted in the inhabited area. Low frequency of captures in the tubes, predator disturbances and cold weather forced the termination of the study. The role of dispersal as a population regulating mechanism was further substantiated. The genetic differences between emigrant and resident animals lend support to Howard's hypothesis that a genetic polymorphism influences the tendency to disperse. Support is also given to Myers' and Krebs' contention that among dispersers an additional density dependent polymorphism influences the distance dispersed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the present study was to determine which augmented sensory modality would best develop subjective error-detection capabilities of learners performing a spatial-temporal task when using a touch screen monitor. Participants were required to learn a 5-digit key-pressing task in a goal time of 2550 ms over 100 acquisition trials on a touch screen. Participants were randomized into 1 of 4 groups: 1) visual-feedback (colour change of button when selected), 2) auditory-feedback (click sound when button was selected), 3) visual-auditory feedback (both colour change and click sound when button was selected), and 4) no-feedback (no colour change or click sound when button was selected). Following each trial, participants were required to provide a subjective estimate regarding their performance time in relation to the actual time it took for them complete the 5-digit sequence. A no-KR retention test was conducted approximately 24-hours after the last completed acquisition trial. Results showed that practicing a timing task on a touch screen augmented with both visual and auditory information may have differentially impacted motor skill acquisition such that removal of one or both sources of augmented feedback did not result in a severe detriment to timing performance or error detection capabilities of the learner. The present study reflects the importance of multimodal augmented feedback conditions to maximize cognitive abilities for developing a stronger motor memory for subjective error-detection and correction capabilities.