3 resultados para selective applicators
em Brock University, Canada
Resumo:
While sleep has been shown to be involved in memory consolidation and the selective enhancement of newly acquired memories of future relevance (Wilhelm, et al., 2011), limited research has investigated the role of sleep or future relevance in processes of memory reconsolidation. The current research employed a list-method directed forgetting procedure in which participants learned two lists of syllable pairs on Night 1 and received directed forgetting instructions on Night 2. On Night 2, one group (Labile; n = 15) received a memory reactivation treatment consisting of reminders designed to return memories of the learned lists to a labile state. A second group (Stable, n = 16) received similar reminders designed to leave memories of the learned lists in their stable state. No differences in forgetting were found across the two lists or groups. However, a negative correlation between frontal delta (1 – 4 Hz) electroencephalographic (EEG) power during Early Stage 2 non-rapid eye movement (NREM) sleep and forgetting of to-beremembered material was found exclusively in the Labile group (r = -.61, p < .05). Further, central theta (4 – 8 Hz ) EEG power during rapid eye movement (REM) sleep was found to correlate with directed forgetting exclusively in the Labile group (r = .81, p < .001) and total forgetting in the Stable group (r = .50, p < .05). These observed relationships support the proposed hypothesis suggesting that sleep processes are involved in the reconsolidation of labile memories, and that this reconsolidation may be selective for memories of future relevance. A role for sleep in the beneficial reprocessing of memories through the selective reconsolidation of labile memories in NREM sleep and the weakening of memories in REM sleep is discussed.
Resumo:
Neuropeptides can modulate physiological properties of neurons in a cell-specific manner. The present work examines whether a neuropeptide can also modulate muscle tissue in a cell-specific manner, using identified muscle cells in third instar larvae of fruit flies. DPKQDFMRFa, a modulatory peptide in the fruit fly Drosophila melanogaster, has been shown to enhance transmitter release from motor neurons and to elicit contractions by a direct effect on muscle cells. We report that DPKQDFMRFa causes a nifedipine-sensitive drop in input resistance in some muscle cells (6 and 7) but not others (12 and 13). The peptide also increased the amplitude of nerve-evoked contractions and compound excitatory junctional potentials (EJPs) to a greater degree in muscle cells 6 and 7 than 12 and 13. Knocking down FMRFa receptor (FR) expression separately in nerve and muscle indicate that both presynaptic and postsynaptic FR expression contributed to the enhanced contractions, but EJP enhancement was due mainly to presynaptic expression. Muscle-ablation showed that DPKQDFMRFa induced contractions and enhanced nerve-evoked contractions more strongly in muscle cells 6 and 7 than cells 12 and 13. In situ hybridization indicated that FR expression was significantly greater in muscle cells 6 and 7 than 12 and 13. Taken together, these results indicate that DPKQDFMRFa can elicit cell-selective effects on muscle fibres. The ability of neuropeptides to work in a cell-selective manner on neurons and muscle cells may help explain why so many peptides are encoded in invertebrate and vertebrate genomes.
Resumo:
The capacity for all living cells to sense and interact with their environment is a necessity for life. In highly evolved, eukaryotic species, like humans, signalling mechanisms are necessary to regulate the function and survival of all cells in the organism. Synchronizing systemic signalling systems at the cellular, organ and whole-organism level is a formidable task, and for most species requires a large number of signalling molecules and their receptors. One of the major types of signalling molecules used throughout the animal kingdom are modulatory substances (e.x. hormones and peptides). Modulators can act as chemical transmitters, facilitating communication at chemical synapses. There are hundreds of circulating modulators within the mammalian system, but the reason for so many remains a mystery. Recent work with the fruit fly, Drosophila melanogaster demonstrated the capacity for peptides to modulate synaptic transmission in a neuron-specific manner, suggesting that peptides are not simply redundant, but rather may have highly specific roles. Thus, the diversity of peptides may reflect cell-specific functions. The main objective of my doctoral thesis was to examine the extent to which neuromodulator substances and their receptors modulate synaptic transmission at a cell-specific level using D. melanogaster. Using three different modulatory substances, i) octopamine - a biogenic amine released from motor neuron terminals, ii) DPKQDFMRFa - a neuropeptide secreted into circulation, and iii) Proctolin - a pentapeptide released both from motor neuron terminals and into circulation, I was able to investigate not only the capacity of these various substances to work in a cell-selective manner, but also examine the different mechanisms of action and how modulatory substances work in concert to execute systemic functionality . The results support the idea that modulatory substances act in a circuit-selective manner in the central nervous system and in the periphery in order to coordinate and synchronize physiologically and behaviourally relevant outputs. The findings contribute as to why the nervous system encodes so many modulatory substances.