2 resultados para rule-based logic

em Brock University, Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis, I examined the relevance of dual-process theory to understanding forgiveness. Specifically, I argued that the internal conflict experienced by laypersons when forgiving (or finding themselves unable to forgive) and the discrepancies between existing definitions of forgiveness can currently be best understood through the lens of dual-process theory. Dual-process theory holds that individuals engage in two broad forms of mental processing corresponding to two systems, here referred to as System 1 and System 2. System 1 processing is automatic, unconscious, and operates through learned associations and heuristics. System 2 processing is effortful, conscious, and operates through rule-based and hypothetical thinking. Different definitions of forgiveness amongst both lay persons and scholars may reflect different processes within each system. Further, lay experiences with internal conflict concerning forgiveness may frequently result from processes within each system leading to different cognitive, affective, and behavioural responses. The study conducted for this thesis tested the hypotheses that processing within System 1 can directly affect one's likelihood to forgive, and that this effect is moderated by System 2 processing. I used subliminal conditioning to manipulate System 1 processing by creating positive or negative conditioned attitudes towards a hypothetical transgressor. I used working memory load (WML) to inhibit System 2 processing amongst half of the participants. The conditioning phase of the study failed and so no conclusions could be drawn regarding the roles of System 1 and System 2 in forgiveness. The implications of dual-process theory for forgiveness research and clinical practice, and directions for future research are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RelAPS is an interactive system assisting in proving relation-algebraic theorems. The aim of the system is to provide an environment where a user can perform a relation-algebraic proof similar to doing it using pencil and paper. The previous version of RelAPS accepts only Horn-formulas. To extend the system to first order logic, we have defined and implemented a new language based on theory of allegories as well as a new calculus. The language has two different kinds of terms; object terms and relational terms, where object terms are built from object constant symbols and object variables, and relational terms from typed relational constant symbols, typed relational variables, typed operation symbols and the regular operations available in any allegory. The calculus is a mixture of natural deduction and the sequent calculus. It is formulated in a sequent style but with exactly one formula on the right-hand side. We have shown soundness and completeness of this new logic which verifies that the underlying proof system of RelAPS is working correctly.