9 resultados para resonance energy level
em Brock University, Canada
Resumo:
The human a-tocopherol transfer protein (h-a-TTP) is understood to be the entity responsible for the specific retention of a-tocopherol (a-toc) in human tissues over all other forms of vitamin E obtained from the diet. a-Tocopherol is the most biologically active form of vitamin E, and to date has been studied extensively with regard to its antioxidant properties and its role of terminating membrane lipid peroxidation chain reactions. However, information surrounding the distribution of a-tocopherol, specifically its delivery to intracellular membranes by a-TTP, is still unclear and the molecular factors influencing transfer remain elusive. To investigate the mechanism of ligand transfer by the h-a-TTP, a fluorescent analogue of a-toc has been used in the development of a fluorescence resonance energy transfer (FRET) assay. (/?)-2,5,7,8-tetramethyl-2-[9-(7-nitro-benzo[l,2,5]oxdiazol-4-ylamino)-nonyl]- chroman-6-ol (NBD-toc) has allowed for the development of the FRET-based ligand transfer assay. This ligand has been utilized in a series of experiments where changes were made to acceptor lipid membrane concentration and composition, as well as to the ionic strength and viscosity of the buffer medium. Such changes have yielded evidence supporting a collisional mechanism of ligand transfer by a-TTP, and have brought to light a new line of inquiry pertaining to the nature of the forces governing the collisional transfer interaction. Through elucidation of the transfer mechanism type, a deeper understanding of the transfer event and the in vivo fate of a-tocopherol have been obtained. Furthermore, the results presented here allow for a deeper investigation of the forces controlling the collisional protein-membrane interaction and their effect on the transfer of a-toc to membranes. Future investigation in this direction will raise the possibility of a complete understanding of the molecular events surrounding the distribution of a-toc within the cell and to the body's tissues.
Resumo:
To further understand in vivo localization and trafficking of a-tocopherol (a-Toe), the most biologically active form of vitamin E, between lipid environments, tocopherols are required that can be followed by teclu1iques such as confocal microscopy and fluorescence resonance energy transfer (FRET) assays. To this end, sixteen fluorescent analogues of a-tocopherol (la-d [(1)anthroy loxy -a-tocopherols, A O-a-Toes], 2a-d [w-nitro benzoxadiazole-a-tocopherols, NBD-aToes], 3a-d [w-dansyl-a-tocopherols, DAN-a-Toes], and 4a-d [w-N-methylanthranilamide-atocopherols, NMA-a-TocsD were prepared by substituting fluorescent labels at the terminus of w-functionalized alkyl chains extending from C-2 of the chroman ring while retaining key binding features of the natural ligand. These compounds were prepared starting from (S)-Trolox® acid VIa esterification, protection, and reduction producing the silyl-protected (S)-Trolox aldehyde that was coupled using Wittig chemistry to different w-hydroxyalkylphosphonium bromides. Reduction of the alkene generated the w-hydroxy functionalized 2-n-alkyl intermediates 9a-d having the necessary 2R stereochemistry. A series of functional group manipulations including mesylation, substitution with azide, and hydride reduction provided w-amino functionalized intermediates 12a-d as well. Coupling intermediates 9a-d and 12a-d with the selected fluorophores (9- anthracene carboxylic acid, 4-chloro-7-nitrobenz-2-oxa-l,3-diazole, 5- dimethylaminonapthalene-l-sulfonyl chloride, and I-methyl-2H-3,1-benzoxazine-2,4(1H)dione), followed by deprotection of the phenolic silyl group, gave the desired fluorescent ligands la-d, 2a-d, 3a-d and 4a-d in good yield. Assessment of their binding affinities with recombinant human a-tocopherol transfer protein (ha-TTP) utilizing fluorescent titration binding assays identified competent ligands for further use in protein studies. Compounds Id (C9-AO-a-Toc) and 2d (C9-NBD-a-Toc) both having nonyl alkyl chain extensions between the chromanol and fluorophore were shown to bind specifically to ha-TTP with dissociation constants (KdS) of approximately 280 nM and 55 nM respectively, as compared to 25 nM for the natural ligand 2R,4'R,^'R-a-tocophQxoL.
Resumo:
Vitamin E is a well known fat soluble chain breaking antioxidant. It is a general tenn used to describe a family of eight stereoisomers of tocopherols. Selective retention of a-tocopherol in the human circulation system is regulated by the a -Tocopherol Transfer Protein (a-TIP). Using a fluorescently labelled a-tocopherol (NBD-a-Toc) synthesized in our laboratory, a fluorescence resonance energy transfer (FRET) assay was developed to monitor the kinetics of ligand transfer by a-hTTP in lipid vesicles. Preliminary results implied that NBD-a-Toe simply diffused from 6-His-a-hTTP to acceptor membranes since the kinetics of transfer were not responsive to a variety of conditions tested. After a series of trouble shooting experiments, we identified a minor contaminant, E coli. outer membrane porin F (OmpF) that co-purified with 6-His-a-hTTP from the metal affinity column as the source of the problem. In order to completely avoid OmpF contamination, a GST -a-hTTP fusion protein was purified from a glutathione agarose column followed by an on-column thrombin digestion to remove the GST tag. We then demonstrated that a-hTTP utilizes a collisional mechanism to deliver its ligand. Furthennore, a higher rate of a-tocopherol transfer to small unilamellar vesicles (SUV s) versus large unilamellar vesicles (LUV s) indicated that transfer is sensitive to membrane curvature. These findings suggest that ahTTP mediated a-Toc transfer is dominated by the hydrophobic nature of a-hTTP and the packing density of phospholipid head groups within acceptor membranes. Based on the calculated free energy change (dG) when a protein is transferred from water to the lipid bilayer, a model was generated to predict the orientation of a-hTTP when it interacts with lipid membranes. Guided by this model, several hydrophobic residues expected to penetrate deeply into the bilayer hydrophobic core, were mutated to either aspartate or alanine. Utilizing dual polarization interferometry and size exclusion vesicle binding assays, we identified the key residues for membrane binding to be F 165, F 169 and 1202. In addition, the rates of ligand transfer of the u-TTP mutants were directly correlated to their membrane binding capabilities, indicating that membrane binding was likely the rate limiting step in u-TTP mediated transfer of u-Toc. The propensity of u-TTP for highly curved membrane provides a connection to its colocalization with u-Toc in late endosomes.
Resumo:
A new series of nano-sized Ce1-xEuxCrO3 (x = 0.0 to 1.0) with an average particle size of 50 - 80 nm were synthesized using a solution combustion method. Nano-powders Ce1-xEuxCrO3 with the canted antiferromagnetic property exhibited interesting magnetic behaviours including the reversal magnetization and the exchange bias effect. The effect of europium doping as the ion with the smaller radius size and different electron con figuration on structural, magnetic and thermal properties of Ce1-xEuxCrO3 were investigated using various experimental techniques, i.e. DC/AC magnetic susceptibility, heat capacity, thermal expansion, Raman scattering, X-ray photoemission spectroscopy, transmission/scanning electron microscopy, X-ray powder diffraction and neutron scattering. An exchange bias effect, magnetization irreversibility and AC susceptibility dispersion in these samples confirmed the existence of the spin disorder magnetic phase in Ce1-xEuxCrO3 compounds. The exchange bias phenomenon, which is assigned to the exchange coupling between glassy-like shell and canted antiferromagnetic core, showed the opposite sign in CeCrO3 and EuCrO3 at low temperatures, suggesting different exchange interactions at the interfaces in these compounds. The energy level excitation of samples were examined by an inelastic neutron scattering which was in good agreement with the heat capacity data. Neutron scattering analysis of EuCrO3 was challenging due to the large neutron absorption cross-section of europium. All diffraction patterns of Ce1-xEuxCrO3 showed the magnetic peak attributed to the antiferromagnetic Cr3+ spins while none of the diffraction patterns could detect the magnetic ordering of the rare-earth ions in these samples.
Resumo:
Human Class I phosphatidylinositol transfer proteins (PITPs) exists in two forms: PITPα and PITPβ. PITPs are believed to be lipid transfer proteins based on their capacity to transfer either phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane compartments in vitro. In Drosophila, the PITP domain is found to be part of a multi-domain protein named retinal degeneration B (RdgBα). The PITP domain of RdgBα shares 40 % sequence identity with PITPα and has been shown to possess PI and PC binding and transfer activity. The detailed molecular mechanism of ligand transfer by the human PITPs and the Drosophila PITP domain remains to be fully established. Here, we investigated the membrane interactions of these proteins using dual polarization interferometry (DPI). DPI is a technique that measures protein binding affinity to a flat immobilized lipid bilayer. In addition, we also measured how quickly these proteins transfer their ligands to lipid vesicles using a fluorescence resonance energy transfer (FRET)-based assay. DPI investigations suggest that PITPβ had a two-fold higher affinity for membranes compared to PITPα. This was reflected by a four-fold faster ligand transfer rate for PITPβ in comparison to PITPα as determined by the FRET assay. Interestingly, DPI analysis also demonstrated that PI-bound human PITPs have lower membrane affinity compared to PC-bound PITPs. In addition, the FRET studies demonstrated the significance of membrane curvature in the ligand transfer rate of PITPs. The ligand transfer rate was higher when the accepting vesicles were highly curved. Furthermore, when the accepting vesicles contained phosphatidic acid (PA) which have smaller head groups, the transfer rate increased. In contrast, when the accepting vesicles contained phosphoinositides which have larger head groups, the transfer rate was diminished. However, PI, the favorite ligand of PITPs, or the presence of anionic lipids did not appear to influence the ligand transfer rate of PITPs. Both DPI and FRET examinations revealed that the PITP domain of RdgBα was able to bind to membranes. However, the RdgBα PITP domain appears to be a poor binder and transporter of PC.
Resumo:
Cyanobacteria are able to regulate the distribution of absorbed light energy between photo systems 1 and 2 in response to light conditions. The mechanism of this regulation (the state transition) was investigated in the marine cyanobacterium Synechococcus sp. strain PCC 7002. Three cell types were used: the wild type, psaL mutant (deletion of a photo system 1 subunit thought to be involved in photo system 1 trimerization) and the apcD mutant (a deletion of a phycobilisome subunit thought to be responsible for energy transfer to photo system 1). Evidence from 77K fluorescence emission spectroscopy, room temperature fluorescence and absorption cross-section measurements were used to determine a model of energy distribution from the phycobilisome and chlorophyll antennas in state 1 and state 2. The data confirm that in state 1 the phycobilisome is primarily attached to PS2. In state 2, a portion of the phycobilisome absorbed light energy is redistributed to photo system 1. This energy is directly transferred to photo system 1 by one of the phycobilisome terminal emitters, the product of the apcD gene, rather than via the photo system 2 chlorophyll antenna by spillover (energy transfer between the photo system 2 and photo system 1 chlorophyll antenna). The data also show that energy absorbed by the photo system 2 chlorophyll antenna is redistributed to photo system 1 in state 2. This could occur in one of two ways; by spillover or in a way analogous to higher plants where a segment of the chlorophyll antenna is dissociated from photo system 2 and becomes part of the photo system 1 antenna. The presence of energy transfer between neighbouring photo system 2 antennae was determined at both the phycobilisome and chlorophyll level, in states 1 and 2. Increases in antenna absorption cross-section with increasing reaction center closure showed that there is energy transfer (connectivity) between photosystem 2 antennas. No significant difference was shown in the amount of connectivity under these four conditions.
Resumo:
Most metabolic functions are optimized within a narrow range of body temperatures, which is why thermoregulation is of great importance for the survival and overall fitness of an animal. It has been proposed that lizards will thermoregulate less precisely in low thermal quality environments, where the costs associated with thermoregulation are high; in the case of lizards, whose thermoregulation is mainly behavioural, the primary costs ofthermoregulation are those derived from locomotion. Decreasing thermoregulatory precision in costly situations is a strategy that enhances fitness by allowing lizards to be more flexible to changing environmental conditions. It allows animals to maximize the benefits of maintaining a relatively high body temperature while minimizing energy expenditure. In situations where oxygen concentration is low, the costs of thermoregulation are relatively high (i.e. in relation to the amount of oxygen available for metabolic functions). As a result, it is likely that exposures to hypoxic conditions induce a decrease in the precision of thermoregulation. This study evaluated the effects of hypoxia and low environmental thermal quality, two energetically costly conditions, on the precision and level of thermoregulation in the bearded dragon, Pogona vitticeps, in an electronic temperature-choice shuttle box. Four levels of hypoxia (1O, 7, 5 and 4% 02) were tested. Environmental thermal quality was manipulated by varying the rate of temperature change (oTa) in an electronic temperature-choice shuttle box. Higher oT a's translate into more thermally challenging environments, since under these conditions the animals are forced to move a greater number of times (and hence invest more energy in locomotion) to maintain similar temperatures than at lower oTa's. In addition, lizards were tested in an "extreme temperatures" treatment during which air temperatures of the hot and cold compartments of the shuttle box were maintained at a constant 50 and 15°C respectively. This was considered the most thermally challenging environment. The selected ambient (T a) and internal body temperatures (Tb) of bearded dragons, as well as the thermoregulatory precision (measured by the central 68% ofthe Ta and T b distribution) were evaluated. The thermoregulatory response was similar to both conditions. A significant increase in the size of the Tb range, reflecting a decrease in thermoregulatory precision, and a drop in preferred body temperature of ~2 °C, were observed at both 4% oxygen and at the environment of lowest thermal quality. The present study suggests that in energetically costly situations, such as the ones tested in this study, the bearded dragon reduces energy expenditure by decreasing preferred body temperature and minimizing locomotion, at the expense of precise behavioural thermoregulation. The close similarity of the behavioural thermoregulatory response to two very different stimuli suggests a possible common mechanism and neuronal pathway to the thermoregulatory response.
Resumo:
There is considerable interest in intramolecular energy transfer, especially in complexes which absorb visible light, because it is crucial to the better understanding of photoharvesting systems in photosynthetic organisms and for utilizing solar energy as well. Porphyrin dimers represent one of the best systems for the exploration of light-induced intramolecular energy transfer. Many kinds of porphyrins and porphyrin dimers have been studied over the past decade, however little attention has been paid to the influence of paramagnetic metals on the behavior of their excited states. In this thesis, Electron Paramagnetic Resonance Spectroscopy (EPR) is used to study such compounds. After light irradiation, porphyrins easily produce a variety of excited states, which are spin polarized and can be detected by the time-resolved (TR) EPR technique. The spin polarized results for vanadyl porphyrins, their electrostatically-coupled dimers, a covalently-linked copper porphyrin-free base porphyrin dimer, and free base porphyrins are presented in this thesis. From these results we can conclude that the spin polarization patterns of vanadyl porphyrins come primarily from the trip-quartet state generated by intersystem crossing (lSC) from the excited sing-doublet state through the trip-doublet state. The spin polarization pattern of electrostatically-coupled vanadyl porphyrin-free base porphyrin dimer is produced by the triplet state of the free base porphyrin half which is coupled to the unpaired electron on the vanadyl ion.
Resumo:
The proce-ss ofoxygenic photosynthesis is vital to life on Earth. the central event in photosynthesis is light induced electron transfer that converts light into energy for growth. Ofparticular significance is the membrane bound multisubunit protein known as Photosystem I (PSI). PSI is a reaction centre that is responsible for the transfer of electrons across the membrane to reduce NADP+ to NADPH. The recent publication ofa high resolution X-ray structure of PSI has shown new information about the structure, in particular the electron transfer cofactors, which allows us to study it in more detail. In PSI, the secondary acceptor is crucial for forward electron transfer. In this thesis, the effect of removing the native acceptor phylloquinone and replacing it with a series of structurally related quinones was investigated via transient electron paramagnetic resonance (EPR) experiments. The orientation of non native quinones in the binding site and their ability to function in the electron transfer process was determined. It was found that PSI will readily accept alkyl naphthoquinones and anthraquinone. Q band EPR experiments revealed that the non-native quinones are incorporated into the binding site with the same orientation of the headgroup as in the native system. X band EPR spectra and deuteration experiments indicate that monosubstituted naphthoquinones are bound to the Al site with their side group in the position occupied by the methyl group in native PSI (meta to the hydrogen bonded carbonyl oxygen). X band EPR experiments show that 2, 3- disubstituted methyl naphthoquinones are also incorporated into the Al site in the same orientation as phylloquinone, even with the presence of a halogen- or sulfur-containing side chain in the position normally occupied by the phytyl tail ofphylloquinone. The exception to this is 2-bromo-3-methyl --.- _. -. - -- - - 4 _._ _ _ - _ _ naphthoquinone which has a poorly resolved spectrum, making determination of the orientation difficuh. All of the non-native quinones studied act as efficient electron acceptors. However, forward electron transfer past the quinone could only be demonstrated for anthraquinone, which has a more negative midpoint potential than phylloquinone. In the case of anthraquinone, an increased rate of forward electron transfer compared to native PSI was found. From these results we can conclude that the rate ofelectron transfer from Al to Fx in native PSI lies in the normal region ofthe Marcus Curve.