2 resultados para reducing atmosphere

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene therapy is predicated upon efficient gene transfer. While viral vectors are the method of choice for transformation efficiency, the immunogenicity and safety concerns remain problematic. Non-viral vectors, on the other hand, have shown high degrees of safety and are mostly non-immunogenic in nature. However, non-viral vectors usually suffer from low levels oftransformation efficiency and transgene expression. Thus, increasing transformation efficiency ofnon-viral vectors, in particular by calcium phosphate co-precipitation technique, is a way of generating a suitable vector for gene therapy and is the aim of this study. It is a long known fact that different cell lines have different transfection efficiencies regardless oftransfection methodology (Lin et a!., 1994). Using commonly available cell lines Madine-Darby Bovine Kidney (MDBK), HeLa and Human Embryonic Kidney (HEK-293), we have shown a decreasing trend ofDNase activity based on a plasmid digestion assay. From densitometry studies, as much as a 40% reduction in DNase activity was observed when comparing HEK-293 (least active) to MDBK (most active). Using various biochemical assays, it was determined that DNase y, in particular, was expressed more highly in MDBK cells than both HeLa and HEK-293. Upon cloning of the bovine DNase y gene, we utilized the sequence information to construct antisense expressing plasmids via both traditional antisense RNA (pASDGneoM) and siRNA (psiRNA-S4, psiRNA-S11 and psiRNA-S16). For the construction ofpASDGneoM, the 3' end of the DNase y was inserted in opposite orientation under a cytomegalovirus (CMV) promoter such that the expression ofRNA complementary to the DNase 2 ymRNA occurred. For siRNA plasmids, the sequence was screened to yield optimal short sequences for siRNA inhibition. The silencing ofbovine DNase y led to an increase in transfection efficiency based on traditional calcium phosphate co-precipitation technique; stable clones of siRNA-producing MDBK cell lines (psiRNA-S4 Bland psiRNA-S4 B4) both demol).strated 4-fold increases in transfection efficiency. Furthermore, serial transfection of antisense DNase y plasmid pASDGneoM and reporter pCMV-~ showed a maximum of 8-fold increase in transfection efficiency when the two separate transfections were carried out 4 hours apart (i.e. transfection ofpASDGneoM, separated by four hours, then transfection ofpCMV-~). Together, these results demonstrate the involvement ofDNase y in reducing transfection efficiency, at least by traditional calcium phosphate technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GABA (4-aminobutyrate) is synthesized through the decarboxylation of LGlu- (L-Glu-+ H+ ---> GABA + C02), and compared to many free amino acids is present in high concentrations in plant cells. GABA levels rise rapidly and dramatically in response to varied stress conditions including anaerobiosis. Recent papers suggest that GABA production and associated H+ consumption are parts of a metabolic pH-stat mechanism which ameliorates the intracellular pH decline associated with anaerobiosis or other treatments. To test this hypothesis GABA production and efflux have been measured in isolated Asparagus sprengeri cells in response to three treatments which potentially cause intracellular acidification. Acid loads were imposed using 60 min of (i) anaerobiosis, (ii) H+/LGlu- cotransport, and (iii) treatment with permeant weak acids (butyric, acetic and propionic). Both intra- and extracellular GABA concentrations increased more than 100% after anaerobiosis, almost 1000% after H+/L-Glu- cotransport (light or dark) and almost 5000/0 after addition of 5 mM butyric acid at pH 5.0. HPLC analysis of amino acids indicates that as GABA concentrations increased in response to butyric acid addition, glutamate concentrations decreased. Time-course studies demonstrated that added butyric acid stimulates GABA production by 2800/0 within 15 seconds. A fluorescent determination of cytosolic pH indicates that addition of butyric or other weak acids resulted in a rapid reduction in cytosolic pH of 0.6 pH units. The half time for the response to butyric acid addition is 2.1 seconds, indicating that the decline in cytosolic pH is rapid enough to account for the rapid stimulation of GABA production. The acid load in response to butyric acid addition was assayed by measurements of 14C-butyric acid uptake. Calculations indicate that GABA production accounted for 45% of the imposed acid load. The biological significance of GABA efflux is not yet understood. The results support the original hypothesis suggesting a role for GABA production in cellular pH regulation.