4 resultados para readsorption and redistribution
em Brock University, Canada
Resumo:
Abstract This thesis argues that poverty alleviation strategies and programs carried out by the government and Non Governmental Organizations in Ghana provide affirmative solutions to poverty. This is because, these intervention strategies have been influenced by conventional discourses on poverty that fail to adequately address non-economic issues of poverty such as powerlessness, marginalization and tmder-representation. The study is carried out in a two-pronged manner; first, it analyses state policies and strategies, particularly the Ghana Poverty Reduction Strategy (GPRS), on poverty alleviation and compares these to NGO programs, implemented with funds and support from external donor organizations. Specifically, I focus on how NGOs and the governnlent of Ghana negotiate autonomy and financial dependency with their funding donor-partners and how these affect their policies and programs. Findings from this study reveal that while external influences dominate poverty alleviation policies and strategies, NGOs and the government of Ghana exercise varying degrees of agency in navigating these issues. In particular, NGOs have been able to adapt their programs to the changing needs of donor markets, and are also actively engaged in re-orienting poverty back to the political domain through advocacy campaigns. Overall, rural communities in Ghana depend on charitable NGOs for the provision of essential social services, while the Ghanaian government depends on international donor assistance for its development projects.
Resumo:
Phycobilisomes are the major light harvesting complexes for cyanobacteria and phycocyanin is the primary phycobiliprotein of the phycobilisome rod. The phycocyanobilin lyases responsible for chromophorylating the phycocyanin p subunit (CpcB) have been recently identified in the cyanobacterium Synechococcus sp. PCC 7002. Surprisingly, mutants missing the CpcB lyases were nevertheless capable of producing pigmented phycocyanin. 10K absorbance measurements revealed that the energy states of the p phycocyanin chromophores were only subtly shifted; however, 77K steady state fluorescence emission spectroscopy showed excitation energy transfer involving the targeted chromophores to be highly disrupted. Such evidence suggests that phycobilin orientation within the binding domain is specifically modified. We hypothesized that alternate, less specific lyases are able to act on the p binding sites. A phycocyanin linker-polypeptide deficient mutant was similarly characterized. The light state transition, a short term adaptation of the photosynthetic light harvesting apparatus resulting in the redistribution of excitation energy among the photo systems, was shown to be dominated by the reallocation of phycocyanin-absorbed excitation energy. Treatment with a high M phosphate buffer effectively prevented the redistribution of both chlorophyll a- and phycobilisome- absorbed excitation energy, suggesting that the two effects are not strictly independent. The mutant strains required a larger redistribution of excitation energy between light states, perhaps to compensate for their loss in phycobilisome antenna function.
Resumo:
The Pater metavolcanic suite (PVS) was extruded as part O'f the basal Pater Formation of the Huronian Supergroup ca. 2.4 Ga. They Ars classified as wi thin-plate tholeiites associated with an immature ri-fting episode, and are inter layered with associated vol cani clastic and metasedimentary units. Post-solidif ication alteration caused redistribution o-f the alkalies, Sr, Rb, Ba, Cu, and SiO^. Ce, Y, Zr, CFezOs (as total Fe), Al^Os, TiOa, and, PaOa are considered to have remained essentially immobile in least altered samples. Petrogenetic modelling indicates the PVS was derived from the partial melting of two geochemical ly similar sources in the sub-continental lithosphere. Fractionation was characterized by an oli vine-plagioclase assemblage and a sub-volcanic plagioclase-clinopyroxene assemblage. A comparative study indicates that enrichment of the postulated Huronian source cannot be reconciled by Archean contamination. Enrichment is thought to have been caused by hydrous veined metasomatic heterogeneities in the sub-continental lithosphere, generated by an Archean subduct ion event before 2.68 Ga.
Resumo:
The formation and the isolation of fluoroboron salts, (D2BF2+)(PF6-), (DD'BF2+)(PF6-) and (D3BF2+)(PF6-)2, have been carried out. 1,8-Diazabicyclo [5,4.0]undec-7-ene (DBU) and 1,5-diazabicyclo[4,3,O]non-5-ene (DBN), extremely strong organic bases, were introduced into the fluoroboron cation systems and induced a complicated redistribution reaction in the D/BF3/BC13 systems. The result was the formation of all BFnCI4-n-, D.BFnCI3-n and fluoroboron cation species which were detected by 19p and 11B NMR spectrometry. The displacement reaction of CI- from these D.BFnCI3-n (n = 1 and 2) species by the second entering ligand is much faster than in other nitrogen donor containing systems which have been previously studied. Tetramethylguanidine, oxazolines and thiazolines can also produce similar reactions in D/BF3/BCI3 systems, but no significant BFnC4-n- species were observed. As well as influences of their basicity and their steric hindrance, N=C-R(X) (X = N, 0 or S) and N=C( X)2 (X = N or S) structures of ligands have significant effects on the fonnationof fluoroboron cations and the related NMR parameters. D3BF2+ and some D2BF2+ show the expected inertness, but (DBU)2BF2+ shows an interestingly high reactivity. (D2BF2+)(X-) formed from weak organic bases such as pyridine can react with stronger organic bases and form DD'BF2+ and D'2BF2+ in acetone or nitromethane. Fast atom bombardment mass spectrometry is doubly meaningful to this work. Firstly, FABMS can be directly applied to the complicated fluoroboron cation containing solution systems as an excellent complementary technique to multinuclear NMR. Secondly, the gas-phase ion substitution reaction of (D2BF2+)(PF6-) with the strong organic bases is successfully observed in a FABMS ion source when the B-N bond is not too strong in these cations.