4 resultados para publication selectivity

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natural abundance of the N-heterocycle containing compounds has pushed the synthetic community toward the invention of new synthetic methods that result in the structural diversity of N-heterocycles. Among this, is the efficient and highly selective diamine mediated asymmetric lithiation process. Amongst the diamine chiral ligands, (-)-sparterine, which is a naturally occurring alkaloid proved to be an efficient one. Many successful, good yielding and highly selective lithiation reactions have been accomplished with the mediation by this chiral diamine base. Although, there are some examples of experimental and theoretical mechanistic studies in the literature, there is a lack of detailed understanding as to how it exactly induces the chirality. In this thesis is described a systematic investigation of how (-)-sparteine influences the stereoselectivity in the course of asymmetric lithiation reaction. This led us to the establishment of the function of A-ring’s β-CH2 effect and D-ring effect. Consequently, the importance of the A-ring and D-ring portions of (-)-sparteine in the stereoselectivity is unraveled. Another part of this thesis deals with the asymmetric lithiation of BF3-activated N,N- dimethylaminoferrocene in the presence of (1R, 2R)-N1,N2-bis(3,3-dimethylbutyl)-N1,N2-dimethylcyclohexane-1,2-diamine ( a (R,R)-TMCDA surrogate) with i-PrLi. Computational findings were in full accord with the experimental observations. Subsequently, the theoretically provided insights into the mechanism of the reaction were exploited in computational design of a new ligand. Unfortunately, the outcome of this design was not experimentally robust and an updated approach towards a successful design was explained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acquired with funds provided by Heritage Lodge No. 730 and Grand Lodge of Canada A.F. and A.M. in the Province of Ontario, 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acquired with funds provided by Heritage Lodge No. 730 and Grand Lodge of Canada A.F. and A.M. in the Province of Ontario, 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exact mechanistic understanding of various organocatalytic systems in asymmetric reactions such as Henry and aza-Henry transformations is important for developing and designing new synthetic organocatalysts. The focus of this dissertation will be on the use of density functional theory (DFT) for studying the asymmetric aza-Henry reaction. The first part of the thesis is a detailed mechanistic investigation of a poorly understood chiral bis(amidine) (BAM) Brønsted acid catalyzed aza-Henry reaction between nitromethane and N-Boc phenylaldimine. The catalyst, in addition to acting as a Brønsted base, serves to simultaneously activate both the electrophile and the nucleophile through dual H-bonding during C-C bond formation and is thus essential for both reaction rate and selectivity. Analysis of the H-bonding interactions revealed that there was a strong preference for the formation of a homonuclear positive charge-assisted H-bond, which in turn governed the relative orientation of substrate binding. Attracted by this well-defined mechanistic investigation, the other important aspect of my PhD research addressed a detailed theoretical analysis accounting for the observed selectivity in diastereoselective versions of this reaction. A detailed inspection of the stereodetermining C-C bond forming transition states for monoalkylated nitronate addition to a range of electronically different aldimines, revealed that the origins of stereoselectivity were controlled by a delicate balance of different factors such as steric, orbital interactions, and the extent of distortion in the catalyst and substrates. The structural analysis of different substituted transition states established an interesting dependency on matching the shape and size of the catalyst (host molecule) and substrates (guest molecules) upon binding, both being key factors governing selectivity, in essence, offering an analogy to positive cooperative binding effect of catalytic enzymes and substrates in Nature. In addition, both intra-molecular (intra-host) and inter-molecular (host-guest, guest-guest) stabilizing interactions play a key role to the high π-facial selectivity. The application of dispersion-corrected functionals (i.e., ωB97X-D and B3LYP-D3) was essential for accurately modeling these stabilizing interactions, indicating the importance of dispersion effects in enantioselectivity. As a brief prelude to more extensive future studies, the influence of a triflate counterion on both reactivity and selectivity in this reaction was also addressed.