6 resultados para protein-RNA interaction

em Brock University, Canada


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The human a-tocopherol transfer protein (h-a-TTP) is understood to be the entity responsible for the specific retention of a-tocopherol (a-toc) in human tissues over all other forms of vitamin E obtained from the diet. a-Tocopherol is the most biologically active form of vitamin E, and to date has been studied extensively with regard to its antioxidant properties and its role of terminating membrane lipid peroxidation chain reactions. However, information surrounding the distribution of a-tocopherol, specifically its delivery to intracellular membranes by a-TTP, is still unclear and the molecular factors influencing transfer remain elusive. To investigate the mechanism of ligand transfer by the h-a-TTP, a fluorescent analogue of a-toc has been used in the development of a fluorescence resonance energy transfer (FRET) assay. (/?)-2,5,7,8-tetramethyl-2-[9-(7-nitro-benzo[l,2,5]oxdiazol-4-ylamino)-nonyl]- chroman-6-ol (NBD-toc) has allowed for the development of the FRET-based ligand transfer assay. This ligand has been utilized in a series of experiments where changes were made to acceptor lipid membrane concentration and composition, as well as to the ionic strength and viscosity of the buffer medium. Such changes have yielded evidence supporting a collisional mechanism of ligand transfer by a-TTP, and have brought to light a new line of inquiry pertaining to the nature of the forces governing the collisional transfer interaction. Through elucidation of the transfer mechanism type, a deeper understanding of the transfer event and the in vivo fate of a-tocopherol have been obtained. Furthermore, the results presented here allow for a deeper investigation of the forces controlling the collisional protein-membrane interaction and their effect on the transfer of a-toc to membranes. Future investigation in this direction will raise the possibility of a complete understanding of the molecular events surrounding the distribution of a-toc within the cell and to the body's tissues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Growth stimulation of Avena coleoptile tissue by indoleacetic acid (IAA) and fusicoccin (FC) was compared by measuring both their influence on RNA and protein synthesis during IAA or FC stimulated growth. FC stimulated growth more than IAA during the initial four hour exposure, after which the growth rate gradually declined to the control rate. FC, but not IAA, increased the uptake of 3H-Ieucine into tissue and the specific radioactivity of extracted protein. Cycloheximide inhibited the incorporation of 3H-Ieucine into protein by approximately 60% to 70% in all cases. In the presence of cycloheximide 3H-radioactivity accumulated in FC-treated tissue, whereas IAA did not seem to influence 3H-accumulation. These results suggest that FC stimulated leucine uptake into the tissue and that increased specific activity of coleoptile protein is due to increased leucine uptake, not an increased rate of protein synthesis. There was no measurable influence of IAA and/or FC on RNA and protein synthesis during the initial hours of a growth stimulation. Inhibitors of RNA and protein synthesis, actinomycin D and cycloheximide, respectively, severely inhibited IAA enhanced growth but only partially inhibited FC stimulated growth. The data are consistent with suggestions that a rapidly turning over protein participates in IAA stimulated growth, and that a continual synthesis of RNA and proteins is an absolute requirement for a long term growth response to IAA. On the contrary, FC-stimulated growth exhibited less dependency on the transcription and translation processes. The data are consistent with proposals suggesting different sites of action for FC and IAA stimulated growth. l?hen compared to CO2-free air, CO2 at 300 ppm had no significant influence on coleoptile growth and protein synthesis in the presence or absence of lAA or FC. Also, I mM malate, pH 6.0 did not influence growth of coleoptiles in the presence or absence of lAA. This result was obtained despite reports indicating that 300 ppm CO2 or I mM malate stimulates growth and protein synthesis. This lack of difference between CO2-treated and untreated tissue could indicate either that the interstitial space CO2 concentration is not actually different in the two treatments due to significant endogenous respiratory CO2 or else the data would suggest a very loose coupling between dark CO2 fixation and growth. IAA stimulated the in vivo fixation of 14c-bicarbonate (NaHI4c03) by about 25% and the addition of cycloheximide caused an inhibition of bicarbonate fixation within 30 min. Cycloheximide has also been reported to inhibit IAA-stimulated H+ excretion. These data are consistent with the acid growth theory and suggest that lAA stimulated growth involves dark CO2 fixation. The roles of dark CO2 fixation in lAA-stimulated growth are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project aimed to determine the protein prof i les and concent rat ion in honeys, ef fect of storage condi t ions on the protein content and the interact ion between proteins and polyphenols. Thi r teen honeys f rom di f ferent botanical or igins were analyzed for thei r protein prof i les using SDS-PAGE, protein concent rat ion and phenol ic content , using the Pierce Protein Assay and Fol in-Ciocal teau methods, respectively. Protein-polyphenol interact ions were analyzed by a combinat ion of the ext ract ion of honeys wi th solvents of di f ferent polar i t ies fol lowed by LCjMS analysis of the obtained f ract ions. Results demonst rated a di f ferent protein content in the tested honeys, wi th buckwheat honey possessing the highest protein concent rat ion. We have shown that the reduct ion of proteins dur ing honey storage was caused, partially, by the protein complexat ion wi th phenolics. The LCjMS analysis of the peak elut ing at retent ion t ime of 10 to 14 min demonst rated that these phenolics included f lavonoids such as Pinobanksin, Pinobanksin acetate, Apigenin, Kaemferol and Myricetin and also cinnamic acid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arabidopsis thaliana is an established model plant system for studying plantpathogen interactions. The knowledge garnered from examining the mechanism of induced disease resistance in this model system can be applied to eliminate the cost and danger associated with current means of crop protection. A specific defense pathway, known as systemic acquired resistance (SAR), involves whole plant protection from a wide variety of bacterial, viral and fungal pathogens and remains induced weeks to months after being triggered. The ability of Arabidopsis to mount SAR depends on the accumulation of salicylic acid (SA), the NPRI (non-expressor of pathogenesis related gene 1) protein and the expression of a subset of pathogenesis related (PR) genes. NPRI exerts its effect in this pathway through interaction with a closely related class of bZIP transcription factors known as TGA factors, which are named for their recognition of the cognate DNA motif TGACG. We have discovered that one of these transcription factors, TGA2, behaves as a repressor in unchallenged Arabidopsis and acts to repress NPRI-dependent activation of PRJ. TGA1, which bears moderate sequence similarity to TGA2, acts as a transcriptional activator in unchallenged Arabidopsis, however the significance of this activity is J unclear. Once SAR has been induced, TGAI and TGA2 interact with NPRI to form complexes that are capable of activating transcription. Curiously, although TGAI is capable of transactivating, the ability of the TGAI-NPRI complex to activate transcription results from a novel transactivation domain in NPRI. This transactivation domain, which depends on the oxidation of cysteines 521 and 529, is also responsible for the transactivation ability of the TGA2-NPRI complex. Although the exact mechanism preventing TGA2-NPRI interaction in unchallenged Arabidopsis is unclear, the regulation of TGAI-NPRI interaction is based on the redox status of cysteines 260 and 266 in TGAl. We determined that a glutaredoxin, which is an enzyme capable of regulating a protein's redox status, interacts with the reduced form of TGAI and this interaction results .in the glutathionylation of TGAI and a loss of interaction with NPRl. Taken together, these results expand our understanding of how TGA transcription factors and NPRI behave to regulate events and gene expression during SAR. Furthermore, the regulation of the behavior of both TGAI and NPRI by their redox status and the involvement of a glutaredoxin in modulating TGAI-NPRI interaction suggests the redox regulation of proteins is a general mechanism implemented in SAR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resveratrol, a polyphenol found naturally in red wines, has attracted great interest in both the scientific community and the general public for its reported ability to protect against many of the diseases facing Western society today. While the purported health effects of resveratrol are well characterized, details of the cellular mechanisms that give rise to these observations are unclear. Here, the mitochondrial antioxidant enzyme Mn superoxide dismutase (MnSOD) was identified as a proximal target of resveratrol in vitro and in vivo. MnSOD protein and activity levels increase significantly in cultured cells treated with resveratrol, and in the brain tissue of mice given resveratrol in a high fat diet. Preventing the increase in MnSOD levels eliminates two of resveratrol’s more interesting effects in the context of human health: inhibition of proliferative cell growth and cytoprotection. Thus, the induction of MnSOD is a critical step in the molecular mechanism of resveratrol. Mitochondrial morphology is a malleable property that is capable of impeding cell cycle progression and conferring resistance against stress induced cell death. Using confocal microscopy and a novel ‘cell free’ fusion assay it was determined that concurrent with changes in MnSOD protein levels, resveratrol treatment leads to a more fused mitochondrial reticulum. This observation may be important to resveratrol’s ability to slow proliferative cell growth and confer cytoprotection. Resveratrol's biological activities, including the ability to increase MnSOD levels, are strikingly similar to what is observed with estrogen treatment. Resveratrol fails to increase MnSOD levels, slow proliferative cell growth and confer cytoprotection in the presence of an estrogen receptor antagonist. Resveratrol's effects can be replicated with the specific estrogen receptor beta agonist diarylpropionitrile, and are absent in myoblasts lacking estrogen receptor beta. Four compounds that are structurally similar to resveratrol and seven phytoestrogens predicted to bind to estrogen receptor beta were screened for their effects on MnSOD, proliferative growth rates and stress resistance in cultured mammalian cells. Several of these compounds were able to mimic the effects of resveratrol on MnSOD levels, proliferative cell growth and stress resistance in vitro. Thus, I hypothesize that resveratrol interacts with estrogen receptor beta to induce the upregulation of MnSOD, which in turn affects cell cycle progression and stress resistance. These results have important implications for the understanding of RES’s biological activities and potential applications to human health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic Acquired Resistance (SAR) is a type of plant systemic resistance occurring against a broad spectrum of pathogens. It can be activated in response to pathogen infection in the model plant Arabidopsis thaliana and many agriculturally important crops. Upon SAR activation, the infected plant undergoes transcriptional reprogramming, marked by the induction of a battery of defense genes, including Pathogenesis-related (PR) genes. Activation of the PR-1 gene serves as a molecular marker for the deployment of SAR. The accumulation of a defense hormone, salicylic acid (SA) is crucial for the infected plant to mount SAR. Increased cellular levels of SA lead to the downstream activation of the PR-1 gene, triggered by the combined action of the Non-expressor of Pathogenesis-related Gene 1 (NPR1) protein and the TGA II-clade transcription factor (namely TGA2). Despite the importance of SA, its receptor has remained elusive for decades. In this study, we demonstrated that in Arabidopsis the NPR1 protein is a receptor for SA. SA physically binds to the C-terminal transactivation domain of NPR1. The two cysteines (Cys521 and Cys529), which are important for NPR1’s coactivator function, within this transactivation domain are critical for the binding of SA to NPR1. The interaction between SA and NPR1 requires a transition metal, copper, as a cofactor. Our results also suggested a conformational change in NPR1 upon SA binding, releasing the C-terminal transactivation domain from the N-terminal autoinhibitory BTB/POZ domain. These results advance our understanding of the plant immune function, specifically related to the molecular mechanisms underlying SAR. The discovery of NPR1 as a SA receptor enables future chemical screening for small molecules that activate plant immune responses through their interaction with NPR1 or NPR1-like proteins in commercially important plants. This will help in identifying the next generation of non-biocidal pesticides.