26 resultados para product transfer
em Brock University, Canada
Resumo:
The Dudding group is interested in the application of Density Functional Theory (DFT) in developing asymmetric methodologies, and thus the focus of this dissertation will be on the integration of these approaches. Several interrelated subsets of computer aided design and implementation in catalysis have been addressed during the course of these studies. The first of the aims rested upon the advancement of methodologies for the synthesis of biological active C(1)-chiral 3-methylene-indan-1-ols, which in practice lead to the use of a sequential asymmetric Yamamoto-Sakurai-Hosomi allylation/Mizoroki Heck reaction sequence. An important aspect of this work was the utilization of ortho-substituted arylaldehyde reagents which are known to be a problematic class of substrates for existing asymmetric allylation approaches. The second phase of my research program lead to the further development of asymmetric allylation methods using o-arylaldehyde substrates for synthesis of chiral C(3)-substituted phthalides. Apart from the de novo design of these chemistries in silico, which notably utilized water-tolerant, inexpensive, and relatively environmental benign indium metal, this work represented the first computational study of a stereoselective indium-mediated process. Following from these discoveries was the advent of a related, yet catalytic, Ag(I)-catalyzed approach for preparing C(3)-substituted phthalides that from a practical standpoint was complementary in many ways. Not only did this new methodology build upon my earlier work with the integrated (experimental/computational) use of the Ag(I)-catalyzed asymmetric methods in synthesis, it provided fundamental insight arrived at through DFT calculations, regarding the Yamamoto-Sakurai-Hosomi allylation. The development of ligands for unprecedented asymmetric Lewis base catalysis, especially asymmetric allylations using silver and indium metals, followed as a natural extension from these earlier discoveries. To this end, forthcoming as well was the advancement of a family of disubstituted (N-cyclopropenium guanidine/N-imidazoliumyl substituted cyclopropenylimine) nitrogen adducts that has provided fundamental insight into chemical bonding and offered an unprecedented class of phase transfer catalysts (PTC) having far-reaching potential. Salient features of these disubstituted nitrogen species is unprecedented finding of a cyclopropenium based C-H•••πaryl interaction, as well, the presence of a highly dissociated anion projected them to serve as a catalyst promoting fluorination reactions. Attracted by the timely development of these disubstituted nitrogen adducts my last studies as a PhD scholar has addressed the utility of one of the synthesized disubstituted nitrogen adducts as a valuable catalyst for benzylation of the Schiff base N-diphenyl methylene glycine ethyl ester. Additionally, the catalyst was applied for benzylic fluorination, emerging from this exploration was successful fluorination of benzyl bromide and its derivatives in high yields. A notable feature of this protocol is column-free purification of the product and recovery of the catalyst to use in a further reaction sequence.
Resumo:
This study was a comparative investigation of face-toface (i.e., proximate) and computer-mediated written (i.e., graphic) pre-writing conferences. The participants in this study were advanced English as a second language students. The 2 types of conferences were compared in terms of textual features, participation, and the . degree to which they were on topic. Moreover, drafts written after the 2 types of conferences were compared in terms of textual features, and the degree to which they were related to the conferences. Students produced an equivalent amount of discourse in an equivalent amount of time in the 2 types of conferences. The discourse in graphic conferences displayed greater lexical range, and some evidence suggests that it was less on-topic. Both these results likely occurred because the graphic conferences contained more discourse demonstrating interactive competence. Participation in graphic conferences was found to be as balanced or more balanced among students, and among students and the group leader combined. Overall, the drafts produced after the 2 types of conferences were of equivalent length and topical range, but some evidence suggests that drafts written after proximate conferences were more related to the conferences.
Resumo:
Cyanobacteria are able to regulate the distribution of absorbed light energy between photo systems 1 and 2 in response to light conditions. The mechanism of this regulation (the state transition) was investigated in the marine cyanobacterium Synechococcus sp. strain PCC 7002. Three cell types were used: the wild type, psaL mutant (deletion of a photo system 1 subunit thought to be involved in photo system 1 trimerization) and the apcD mutant (a deletion of a phycobilisome subunit thought to be responsible for energy transfer to photo system 1). Evidence from 77K fluorescence emission spectroscopy, room temperature fluorescence and absorption cross-section measurements were used to determine a model of energy distribution from the phycobilisome and chlorophyll antennas in state 1 and state 2. The data confirm that in state 1 the phycobilisome is primarily attached to PS2. In state 2, a portion of the phycobilisome absorbed light energy is redistributed to photo system 1. This energy is directly transferred to photo system 1 by one of the phycobilisome terminal emitters, the product of the apcD gene, rather than via the photo system 2 chlorophyll antenna by spillover (energy transfer between the photo system 2 and photo system 1 chlorophyll antenna). The data also show that energy absorbed by the photo system 2 chlorophyll antenna is redistributed to photo system 1 in state 2. This could occur in one of two ways; by spillover or in a way analogous to higher plants where a segment of the chlorophyll antenna is dissociated from photo system 2 and becomes part of the photo system 1 antenna. The presence of energy transfer between neighbouring photo system 2 antennae was determined at both the phycobilisome and chlorophyll level, in states 1 and 2. Increases in antenna absorption cross-section with increasing reaction center closure showed that there is energy transfer (connectivity) between photosystem 2 antennas. No significant difference was shown in the amount of connectivity under these four conditions.
Resumo:
This study examined whether daily classroom meetings resulted in the positive transfer of conflict resolution information and skills beyond the formal classroom setting and into the classroom. A control group of sixteen Grade five students received three weeks of conflict resolution training and an experimental group of nineteen Grade five students fi-om the same school received three weeks of conflict resolution training followed by three additional weeks of class meetings. Pretest measures were taken via a scaled questionnaire and short answer questions before the conflict resolution lessons began for the following skills: knowledge of conflict resolution; conflict resolution behaviour; and attitude about using conflict resolution to resolve problems with other people. Posttest measures examined conflict resolution skills following involvement in the study. Students chosen randomly and both teachers were interviewed following the study. The teachers were again interviewed three months after the study. Teacher journal notes rounded out the data. The results of the study indicated that the Grade five boys who participated in three weeks of conflict resolution training did not increase their conflict resolution skills in any of the areas examined. Girls who participated in three weeks of conflict resolution training did not improve in two areas (i.e., behaviour, knowledge) and became less positive about using verbal mediation to resolve conflicts. The Grade five students who participated in three weeks of training and three weeks of class meetings obtained different results. The boys improved significantly in their ability to use verbal mediation to resolve conflicts and were more positive about verbal mediation. They did not become more knowledgeable about verbal mediation. The girls who participated in three weeks of training and three weeks of class meetings were more knowledgeable of conflict resolution and used conflict resolution to solve problems with other people. However, they were significantly less positive about using these skills to resolve problems.
Resumo:
The human a-tocopherol transfer protein (h-a-TTP) is understood to be the entity responsible for the specific retention of a-tocopherol (a-toc) in human tissues over all other forms of vitamin E obtained from the diet. a-Tocopherol is the most biologically active form of vitamin E, and to date has been studied extensively with regard to its antioxidant properties and its role of terminating membrane lipid peroxidation chain reactions. However, information surrounding the distribution of a-tocopherol, specifically its delivery to intracellular membranes by a-TTP, is still unclear and the molecular factors influencing transfer remain elusive. To investigate the mechanism of ligand transfer by the h-a-TTP, a fluorescent analogue of a-toc has been used in the development of a fluorescence resonance energy transfer (FRET) assay. (/?)-2,5,7,8-tetramethyl-2-[9-(7-nitro-benzo[l,2,5]oxdiazol-4-ylamino)-nonyl]- chroman-6-ol (NBD-toc) has allowed for the development of the FRET-based ligand transfer assay. This ligand has been utilized in a series of experiments where changes were made to acceptor lipid membrane concentration and composition, as well as to the ionic strength and viscosity of the buffer medium. Such changes have yielded evidence supporting a collisional mechanism of ligand transfer by a-TTP, and have brought to light a new line of inquiry pertaining to the nature of the forces governing the collisional transfer interaction. Through elucidation of the transfer mechanism type, a deeper understanding of the transfer event and the in vivo fate of a-tocopherol have been obtained. Furthermore, the results presented here allow for a deeper investigation of the forces controlling the collisional protein-membrane interaction and their effect on the transfer of a-toc to membranes. Future investigation in this direction will raise the possibility of a complete understanding of the molecular events surrounding the distribution of a-toc within the cell and to the body's tissues.
Resumo:
To further understand in vivo localization and trafficking of a-tocopherol (a-Toe), the most biologically active form of vitamin E, between lipid environments, tocopherols are required that can be followed by teclu1iques such as confocal microscopy and fluorescence resonance energy transfer (FRET) assays. To this end, sixteen fluorescent analogues of a-tocopherol (la-d [(1)anthroy loxy -a-tocopherols, A O-a-Toes], 2a-d [w-nitro benzoxadiazole-a-tocopherols, NBD-aToes], 3a-d [w-dansyl-a-tocopherols, DAN-a-Toes], and 4a-d [w-N-methylanthranilamide-atocopherols, NMA-a-TocsD were prepared by substituting fluorescent labels at the terminus of w-functionalized alkyl chains extending from C-2 of the chroman ring while retaining key binding features of the natural ligand. These compounds were prepared starting from (S)-Trolox® acid VIa esterification, protection, and reduction producing the silyl-protected (S)-Trolox aldehyde that was coupled using Wittig chemistry to different w-hydroxyalkylphosphonium bromides. Reduction of the alkene generated the w-hydroxy functionalized 2-n-alkyl intermediates 9a-d having the necessary 2R stereochemistry. A series of functional group manipulations including mesylation, substitution with azide, and hydride reduction provided w-amino functionalized intermediates 12a-d as well. Coupling intermediates 9a-d and 12a-d with the selected fluorophores (9- anthracene carboxylic acid, 4-chloro-7-nitrobenz-2-oxa-l,3-diazole, 5- dimethylaminonapthalene-l-sulfonyl chloride, and I-methyl-2H-3,1-benzoxazine-2,4(1H)dione), followed by deprotection of the phenolic silyl group, gave the desired fluorescent ligands la-d, 2a-d, 3a-d and 4a-d in good yield. Assessment of their binding affinities with recombinant human a-tocopherol transfer protein (ha-TTP) utilizing fluorescent titration binding assays identified competent ligands for further use in protein studies. Compounds Id (C9-AO-a-Toc) and 2d (C9-NBD-a-Toc) both having nonyl alkyl chain extensions between the chromanol and fluorophore were shown to bind specifically to ha-TTP with dissociation constants (KdS) of approximately 280 nM and 55 nM respectively, as compared to 25 nM for the natural ligand 2R,4'R,^'R-a-tocophQxoL.
Resumo:
An in vitro investigation of some important factors controlling the activity of chitin synthase in cell-free extracts of two Mortierella species has been carried out. Mixed membrane fractions from mycelial homogenates of Mortierella candelabrum and Mortierella pusilla were found to catalyse the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine into an insoluble product characterized as chitin by its insolubility in weak acid and alkali, and the release of glucosamine and diacetylchitobiose on hydrolysis with a strong acid and chitinase, respectively. Apparent Km values for UDP-GlcNAc were 1.8 mM and 2.0 mM for M. pusilla and ~ candelabrum, respectively. Polyoxin D was found to be a very potent competitive inhibitor with values of the constant of inhibition, Ki' for both species about three orders of magnitude lower than theKm for UDP-GlcNAc. A divalent cation, Mg+2 , Mn+2 or Co+2 , was required for activity. N-acetylglucosamine, the monomer of chitin, stimulated the activity of the enzyme. The crude enzyme preparation of ~ candelabrum, unlike that of ~ pusilla, showed an absolute requirement for both Mg+2 and N-acetylglucosamine. Large differences in response to exogenous proteases were noted in the ratio of active to inactive chitin synthase of the two species. A fifteen fold or greater increase was obtained after treatment with acid protease (from Aspergillussaitoi) as compared to a two- to four-fold activation of the M. pusilla membrane preparation treated similarly. During storage at 4°C over 48 hours, an endogenous activation of chitin synthase of ~ pus ilIa was achieved, comparable to that obtained by exogenous protease treatment. The high speed supernatant of both species inhibited the chitin synthase activity of the mixed membrane fractions. The inhibitor of ~ pus ilIa was effective against the pre-activated enzyme whereas that of M. candelabrum inhibited the activated enzyme. Several possibilities are discussed as to the role of the different factors regulating the enzyme activity. The suggestion is made from the properties of chitin synthase in the two species that in vivo a delicate balance exists between the activation and inactivation of the enzyme which is responsible for the pattern of wall growth of each fungus.
Resumo:
There were three purposes to this study. The first purpose was to determine how learning can be influenced by various factors i~ the rock climbing experience. The second purpose was to examine what people can learn from the rock climbing experience. The third purpose was to investigate whether that learning can transfer from the rock climbing experience to the subjects' real life in the workplace. Ninety employees from a financial corporation in the Niagara Region volunteered for this study. All subjects were surveyed throughout a one-day treatment. Ten were purposefully selected one month later for interviews. Ten themes emerged from the subjects in terms of what was learned. Inspiration, motivation, and determination, preparation, goals and limitations, perceptions and expectations, confidence and risk taking, trust and support, teamwork, feedback and encouragement, learning from failure, and finally, skills and flow. All participants were able to transfer what was learned back to the workplace. The results of this study suggested that subjects' learning was influenced by their ability to: take risks in a safe environment, fail without penalty, support each other, plan without time constraints, and enjoy the company of fellow workers that they wouldn't normally associate with. Future directions for research should include different types of treatments such as white water rafting, sky diving, tall ship sailing, or caving.
Resumo:
The neuropeptide Th1RFamide with the sequence Phe-Met-Arg-Phe-amide was originally isolated in the clam Macrocallista nimbosa (price and Greenberg, 1977). Since its discovery, a large family ofFl\1RFamide-related peptides termed FaRPs have been found to be present in all major animal phyla with functions ranging from modulation of neuronal activity to alteration of muscular contractions. However, little is known about the genetics encoding these peptides, especially in invertebrates. As FaRP-encoding genes have yet to be investigated in the invertebrate Malacostracean subphylum, the isolation and characterization ofFaRP-encoding DNA and mRNA was pursued in this project. The immediate aims of this thesis were: (1) to amplify mRNA sequences of Procambarus clarkii using a degenerate oligonucleotide primer deduced from the common amino acid sequence ofisolated Procambarus FaRPS, (2) to determine if these amplification products encode FaRP gene sequences, and (3) to create a selective cDNA library of sequences recognized by the degenerate oligonucleotide primer. The polymerase chain reaction - rapid amplification of cDNA ends (PCR-RACE) is a procedure in which a single gene-specific primer is used in conjunction with a generalized 3' or 5' primer to amplify copies ofthe region between a single point in the transcript and the 3' or 5' end of cDNA of interest (Frohman et aI., 1988). PCRRACE reactions were optimized with respect to primers used, buffer composition, cycle number, nature ofgenetic substrate to be amplified, annealing, extension and denaturation temperatures and times, and use of reamplification procedures. Amplification products were cloned into plasmid vectors and recombinant products were isolated, as were the recombinant plaques formed in the selective cDNA library. Labeled amplification products were hybridized to recombinant bacteriophage to determine ligated amplification product presence. When sequenced, the five isolated PCR-RACE amplification products were determined not to possess FaRP-encoding sequences. The 200bp, 450bp, and 1500bp sequences showed homology to the Caenorhabditis elegans cosmid K09A11, which encodes for cytochrome P450; transfer-RNA; transposase; and tRNA-Tyr, while the 500bp and 750bp sequences showed homology with the complete genome of the Vaccinia virus. Under the employed amplification conditions the degenerate oligonucleotide primer was observed to bind to and to amplify sequences with either 9 or 10bp of 17bp identity. The selective cDNA library was obselVed to be of extremely low titre. When library titre was increased, white. plaques were isolated. Amplification analysis of eight isolated Agt11 sequences from these plaques indicated an absence of an insertion sequence. The degenerate 17 base oligonucleotide primer synthesized from the common amino acid sequence ofisolated Procambarus FaRPs was thus determined to be non-specific in its binding under the conditions required for its use, and to be insufficient for the isolation and identification ofFaRP-encoding sequences. A more specific primer oflonger sequence, lower degeneracy, and higher melting temperature (TJ is recommended for further investigation into the FaRP-encoding genes of Procambarlls clarkii.
Resumo:
The regenerating amphibian limb provides a useful system for studying genes involved in the establishment of positional information. While a number of candidate genes that may playa role in pattern formation have been identified, their function in vivo is unknown in this system. To better ascertain the role of these genes, it would be useful to be able to alter their normal patterns of expression in vivo and to assess the effects of this misexpression on limb pattern. In order to achieve this, a method of introducing a plasmid containing the eDNA of a gene of interest into a newt blastema (a growth zone of mesenchymal progenitor cells) is needed. Unfortunately, most commonly used transfection techniques cannot be used with newt blastema cells. In this study, I have used the techniques of lipofection and direct gene transfer to introduce plasmid DNA containing reporter genes into the cells of a regenerating newt limb. The technique of lipofection was most effective when the blastema cells were transfected in vitro. The optimal ratio for transfection was shown to be 1:3 DNA:Lipofectin (W/w) , and an increase in the amount of DNA present in the mixture (1:3 ratio maintained) resulted in a corresponding increase in gene expression. The technique of direct gene transfer was used to transfect newt blastema cells with and without prior complex formation with Lipofectin. Injection of plasmid DNA alone provided the most 3 promising results. It was possible to introduce plasmid DNA containing the reporter gene ~-galactosidase and achieve significant gene expression in cells associated with the injection site. In the future, it would be interesting to use this technique to inject plasmid DNA containing a gene which may have a role in pattern formation into specific areas of the newt blastema and to analyze the resulting limb pattern that emerges.
Resumo:
Rates and products of the oxidation of diphenyl sulfide, phenyl methyl sulfide, p-chlorophenyl methyl sulfide and diphenyl sulfoxide have been determined. Oxidants included t-Bu02H alone, t-Bu02H plus molybdenum or vanadium catalysts and the molybdenum peroxo complex Mo0(02)2*HMPT. Reactions were chiefly carried out in ethanol at temperatures ranging from 20° to 65°C. Oxidation of diphenyl sulfide by t-Bu02H in absolute ethanol at 65°C followed second-order kinetics with k2 = 5.61 x 10 G M~1s"1, and yielded only diphenyl sulfoxide. The Mo(C0)g-catalyzed reaction gave both the sulfoxide and the sulfone with consecutive third-order kinetics. Rate = k3[Mo][t-Bu02H][Ph2S] + k^[Mo][t-Bu02H][Ph2S0], where log k3 = 12.62 - 18500/RT, and log k^ = 10.73 - 17400/RT. In the absence of diphenyl sulfide, diphenyl sulfoxide did not react with t-Bu02H plus molybdenum catalysts, but was oxidized by t-Bu02H-V0(acac)2. The uncatalyzed oxidation of phenyl methyl sulfide by t-Bu02H in absolute ethanol at 65°C gave a second-order rate constant, k = 3.48 x 10~"5 M^s""1. With added Mo(C0)g, the product was mainly phenyl methyl sulfoxide; Rate = k3[Mo][t-Bu02H][PhSCH3] where log k3 = 22.0 - 44500/RT. Both diphenyl sulfide and diphenyl sulfoxide react readily with the molybdenum peroxy complex, Mo0(02)2'HMPT in absolute ethanol at 35°C, yielding diphenyl sulfone. The observed features are mainly in agreement with the literature on metal ion-catalyzed oxidations of organic compounds by hydroperoxides. These indicate the formation of an active catalyst and the complexation of t-Bu02H with the catalyst. However, the relatively large difference between the activation energies for diphenyl sulfide and phenyl methyl sulfide, and the non-reactivity of diphenyl sulfoxide suggest the involvement of sulfide in the production of an active species.
Resumo:
The proce-ss ofoxygenic photosynthesis is vital to life on Earth. the central event in photosynthesis is light induced electron transfer that converts light into energy for growth. Ofparticular significance is the membrane bound multisubunit protein known as Photosystem I (PSI). PSI is a reaction centre that is responsible for the transfer of electrons across the membrane to reduce NADP+ to NADPH. The recent publication ofa high resolution X-ray structure of PSI has shown new information about the structure, in particular the electron transfer cofactors, which allows us to study it in more detail. In PSI, the secondary acceptor is crucial for forward electron transfer. In this thesis, the effect of removing the native acceptor phylloquinone and replacing it with a series of structurally related quinones was investigated via transient electron paramagnetic resonance (EPR) experiments. The orientation of non native quinones in the binding site and their ability to function in the electron transfer process was determined. It was found that PSI will readily accept alkyl naphthoquinones and anthraquinone. Q band EPR experiments revealed that the non-native quinones are incorporated into the binding site with the same orientation of the headgroup as in the native system. X band EPR spectra and deuteration experiments indicate that monosubstituted naphthoquinones are bound to the Al site with their side group in the position occupied by the methyl group in native PSI (meta to the hydrogen bonded carbonyl oxygen). X band EPR experiments show that 2, 3- disubstituted methyl naphthoquinones are also incorporated into the Al site in the same orientation as phylloquinone, even with the presence of a halogen- or sulfur-containing side chain in the position normally occupied by the phytyl tail ofphylloquinone. The exception to this is 2-bromo-3-methyl --.- _. -. - -- - - 4 _._ _ _ - _ _ naphthoquinone which has a poorly resolved spectrum, making determination of the orientation difficuh. All of the non-native quinones studied act as efficient electron acceptors. However, forward electron transfer past the quinone could only be demonstrated for anthraquinone, which has a more negative midpoint potential than phylloquinone. In the case of anthraquinone, an increased rate of forward electron transfer compared to native PSI was found. From these results we can conclude that the rate ofelectron transfer from Al to Fx in native PSI lies in the normal region ofthe Marcus Curve.
Resumo:
Since its discovery nearly a century ago, a-tocopherol (vitamin E) research has been mainly focused on its ability to terminate the cycle of lipid peroxidation in membranes. Nitrobenzoxadiazole fluorescent analogues were made previously to study the intracellular transfer of vitamin E in cells. However, these molecules were reportedly susceptible to photobleaching while under illumination for transfer assays and microscopy. Here is reported the synthesis of a series of fluorescent analogues of vitamin E incorporating the more robust dipyrrometheneboron difluoride fluorophore (BDP-a-Tocs; Aex = 507 nm, Aem = 511 nm). C8-BDP-a-Toc 42c, having an eight-carbon chain between the chromanol and fluorophore, wa<; shown to bind specifically to a-tocopherol transfer protein with a dissociation constant of approximately 100 nM. Another fluorescent analogue of vitamin E with a thienyl derivative of BODIPY that is excited and fluoresces at longer wavelengths (Aex = 561 nm, Aem = 570 nm) is in development.
Resumo:
The a-tocopherol transfer protein (a-TTP) is responsible for the retention of the atocopherol form of vitamin E in living organisms. The detailed ligand transfer mechanism by a-TTP is still yet to be fully elucidated. To date, studies show that a-TTP transfers a-tocopherol from late endosomes in liver cells to the plasma membrane where it is repackaged into very low density lipoprotein (VLDL) and released into the circulation. Late endosomes have been shown to contain a lipid known as lysobisphosphatidic acid (LBP A) that is unique to this cellular compartment. LBPA plays a role in intracellular trafficking and controlling membrane curvature. Taking these observations into account plus the fact that certain proteins are recruited to membranes based on membrane curvature, the specific aim of this project was to examine the effect of LBP A on a-TTP binding to lipid membranes. To achieve this objective, dual polarization interferometry (DPI) and a vesicle binding assay were employed. Whilst DPI allows protein binding affinity to be measured on a flat lipid surface, the vesicle binding assay determines protein binding affinity to lipid vesicles mimicking curved membranes. DPI analysis revealed that the amount of a-TTP bound to lipid membranes is higher when LBPA is present. Using the vesicle binding assay, a similar result was seen where a greater amount of protein is bound to large unilamellar vesicles (LUV s) containing LBP A. However, the effect of LBP A was attenuated when small unilamellar vesicles (SUVs) were replaced with LUVs. The outcome of this project suggests that aTTP binding to membranes is influenced by membrane curvature, which in turn is induced by the presence of LBP A.