5 resultados para procedural deficit hypothesis (PDH)
em Brock University, Canada
Resumo:
A review of the literature reveals that there are a number of children in the educational system who are characterized by Attention Deficit Disorder. Further review of the literature reveals that there are information processing programs which have had some success in increasing the learning of these children. Currently, an information processing program which is based on schema theory is being implemented in Lincoln County. Since schema theory based programs build structural, conditional, factual, and procedural schemata which assist the learner in attending to salient factors, learning should be increased. Thirty-four children were selected from a random sampling of Grade Seven classes in Lincoln County. Seventeen of these children were identified by the researcher and classroom teacher as being characterized by Attention Deficit Disorder. From the remaining population, 17 children who were not characterized by Attention Deficit Disorder were randomly selected. The data collected were compared using independent t-tests, paired t-tests, and correlation analysis. Significant differences were found in all cases. The Non-Attention Deficit Disorder children scored significantly higher on all the tests but the Attention Defici t Disorder children had a significantly higher ratio of gain between the pretests and posttests.
Resumo:
A regional geochemical reconnaissance by bottom stream sediment sampling, has delineated an area of high metal content in the north central sector of the North Creek Watershed. Development of a geochemical model, relating to the relative chemical concentrations derived from the chemical analyses of bottom sediments, suspended sediments, stream waters and well waters collected from the north central sector, was designed to discover the source of the anomaly. Samples of each type of material were analysed by the A.R.L. Direct Reading Multi-element Emission Spectrograph Q.A. 137 for elements: Na, K, Ca, Sr, Si, As, Pb, Zn, Cd, Ni, Ti, Ag, Mo, Be, Fe, AI, Mn, Cu, Cr, P and Y. Anomalous results led to the discovery of a spring, the waters of which carried high concentrations of Zn, Cd, Pb, As, Ni, Ti, Ag, Sr and Si. In addition, the spring waters had high concentrations of Na, Ca, Mg, 504 , alkalinity, N03' and low concentrations of K, Cl and NH3. Increased specific conductivity (up to 2500 ~mho/cm.) was noted in the spring waters as well as increased calculated total dissolved solids (up to 2047 mg/l) and increased ionic strength (up to 0.06). On the other hand, decreases were noted in water temperature (8°C), pH (pH 7.2) and Eh (+.154 volts). Piezometer nests were installed in the anomalous north central sector of the watershed. In accordance with the slope of the piezometric surface from wells cased down to the till/bedrock interface, groundwater flow is directed from the recharge area (northwest of the anomaly) towards the artesian spring via the highly fractured dolostone aquifer of the Upper Eramosa Member. The bedrock aquifer is confined by the overlying Halton till and the underlying Lower Eramosa Member (Vinemount Shale). The oxidation of sphalerite and galena and the dissolution of gypsum, celestite, calcite, and dolomite within the Eramosa Member, contributed its highly, dissolved constituents to the circulating groundwaters, the age of which is greater than 20 years as determined by tritium dating. Groundwater is assumed to flow along the Vinemount Shale and discharge as an artesian spring where the shale unit becomes discontinuous. The anomaly is located on a topographic low where bedrock is close to the surface. Thermodynamic evaluation of the major ion speciation from the anomalous spring and surface waters, showed gypsum to be supersaturated in these spring waters. Downstream from the spring, the loss of carbon dioxide from the spring waters resulted in the supersaturation with respect to calcite, aragonite, magnesite and dolomite. This corresponded with increases in Eh (+.304 volts) and pH (pH 8.5) in the anomalous surface waters. In conclusion, the interaction of groundwaters within the highly, mineralized carbonate source (Eramosa Member) resulted in the characteristic Ca*Mg*HC03*S04 spring water at the anomalous site, which appeared to be the principle effect upon controlling the anomalous surface water chemistry.
Resumo:
This study examined the bee fauna of the Carolinian Zone in Ontario, Canada. In 2003, 15687 individuals from 152 species of bees were collected. Tliere were many rare species but few abundant species. There were three distinct bee seasons. The Niagara bee assemblage was less diverse compared to other Carolinian Zone assemblages and types of landscapes. This study also examined how anthropogenic disturbance affects the diversity of bee assemblages. The intermediate disturbance hypothesis (IDH) was tested by selecting field sites subject to low, intermediate, and high disturbance. Intermediate disturbance had the highest species richness (SR=1 15) and most bees (N=556I), followed by low disturbance (SR= 100, N=2975), then high disturbance (SR=72, N=1364), supporting the IDH. Increased species richness in areas of intermediate disturbance was due to higher abundance, possibly because more blooming flowers were found there. Bees were larger in high disturbance areas but smaller in areas of high and intermediate disturbance.
Resumo:
Sleep spindles have been found to increase following an intense period of learning on a combination of motor tasks. It is not clear whether these changes are task specific, or a result of learning in general. The current study investigated changes in sleep spindles and spectral power following learning on cognitive procedural (C-PM), simple procedural (S-PM) or declarative (DM) learning tasks. It was hypothesized that S-PM learning would result in increases in Sigma power during Non-REM sleep, whereas C-PM and DM learning would not affect Sigma power. It was also hypothesized that DM learning would increase Theta power during REM sleep, whereas S-PM and C-PM learning would not affect Theta power. Thirty-six participants spent three consecutive nights in the sleep laboratory. Baseline polysomnographic recordings were collected on night 2. Participants were randomly assigned to one of four conditions: C-PM, S-PM, DM or control (C). Memory task training occurred on night 3 followed by polysomnographic recording. Re-testing on respective memory tasks occurred one-week following training. EEG was sampled at 256Hz from 16 sites during sleep. Artifact-free EEG from each sleep stage was submitted to power spectral analysis. The C-PM group made significantly fewer errors, the DM group recalled more, and the S-PM improved on performance from test to re-test. There was a significant night by group interaction for the duration of Stage 2 sleep. Independent t-tests revealed that the S-PM group had significantly more Stage 2 sleep on the test night than the C group. The C-PM and the DM group did not differ from controls in the duration of Stage 2 sleep on test night. There was no significant change in the duration of slow wave sleep (SWS) or REM sleep. Sleep spindle density (spindles/minute) increased significantly from baseline to test night following S-PM learning, but not for C-PM, DM or C groups. This is the first study to have shown that the same pattern of results was found for spindles in SWS. Low Sigma power (12-14Hz) increased significantly during SWS following S-PM learning but not for C-PM, DM or C groups. This effect was maximal at Cz, and the largest increase in Sigma power was at Oz. It was also found that Theta power increased significantly during REM sleep following DM learning, but not for S-PM, C-PM or C groups. This effect was maximal at Cz and the largest change in Theta power was observed at Cz. These findings are consistent with the previous research that simple procedural learning is consolidated during Stage 2 sleep, and provide additional data to suggest that sleep spindles across all non-REM stages and not just Stage 2 sleep may be a mechanism for brain plasticity. This study also provides the first evidence to suggest that Theta activity during REM sleep is involved in memory consolidation.
Resumo:
Baerg, S., Cairney, J., Hay, J., Rempel, L. and Faught, B.E. (2009). Physical Activity of Children with Developmental Coordination Disorder in the Presence of Attention Deficit Hyperactivity Disorder: Does Gender Matter? Brock University, St. Catharines, Ontario, CANADA. Children with Developmental Coordination Disorder (DCD) have difficulties in motor coordination. Attention-deficit hyperactive disorder (ADHD) is considered the condition most co-morbid with DCD at approximately 50%. Children with DCD are generally less physically active (PA) than their peers, while children with ADHD are often considered more physically active. It is not known if the physical activity patterns of children with DCD-ADHD resemble those of children with primarily DCD or that of their healthy peers. The primary objective of this research was to contrast physical activity patterns between children with DCD, DCD-ADHD, and healthy controls. Since boys are generally reported as more physically active than girls, a secondary objective was to determine if gender moderated the association between groups and physical activity. A sample of males (n=66) and females (n=44) were recruited from the Physical Health Activity Study Team (PHAST) longitudinal study. The Movement Assessment Battery for Children (2nd Ed.) was used to identify probable cases of DCD, and Connor's Revised Parent Rating Scale- Short Version to identify ADHD. Subjects (mean age=12.8±.4 yrs) were allocated to three groups; DCD (n=32), DCD-ADHD (n=30) and control (n=48). Physical activity was monitored for seven days with the Actical® accelerometer (activity count, step count and energy expenditure). Children completed the Participation Questionnaire (PQ) during the in-school session of data collection for the PHAST study. Height, weight and body mass index (BMI) were also determined. Analysis of variance showed significant group differences for activity count (F(2,56)=5.36, p=.007) and PQ (F(2,44 )=6. 71, p=.003) in males, while a significant group difference for step count (F(2,37)=3.55, p=.04) was found in females. Post hoc comparison tests (Tukey) identified significantly lower PQ and activity count between males with OCD and controls (p=.004) and males with DCD-ADHD and controls (p=.003). Conversely, females with DCD-ADHD had significantly more step counts than their controls (p=.01). Analysis of covariance demonstrated a gender by DCD groups negative interaction for males (activity count) (F(2,92):;:3.11, p=.049) and a positive interaction for females (step count) (F(1,92)=4.92, p=.009). Hyperactivity in females with DCD-ADHD appears to contribute to more physical activity, whereas DCD may contribute to decreased activity in males with DCD and DCDADHD. Further research is needed to examine gender differences in physical activity within the context of DCD and ADHD.