13 resultados para plus o-2 reaction
em Brock University, Canada
Resumo:
Single photon timing was used to study picosecond chlorophyll a fluorescence decay kinetics of pH induced non-photochemical quenching in spinach photosystem 2 particles. The characteristics of this quenching are a decrease in chlorophyll a fluorescence yield as well as a decrease in photochemistry at low pH. Picosecond kinetics of room temperature fluorescence temporally resolve the individual components of the steady state fluorescence yield into components that are related to primary energy conversion processes in photosystem 2. Four components were resolved for dark adapted (Fo), light saturated (Fm), and chemically reduced (Nadithionite) photosystem 2 reaction centres. The fastest and slowest components, indicative of energy transfer to and energy capture by the photosystem 2 reaction centre and uncoupled ("dead") chlorophyll, respectively, were not affected by changing pH from 6.5 to 4.0. The two intermediate components, indicative of electron transfer processes within the reaction centre of photosystem 2, were affected by the pH change. Results indicate that the decrease in the steady state fluorescence yield at low pH was primarily due to the decrease in lifetime and amplitude of the slower of the intermediate components. These results imply that the decrease in steady state fluorescence yield at low pH is not due to changes in energy transfer to and energy capture by the photosystem 2 reaction centre, but is related to changes in charge stabilization and charge recombination in the photosystem 2 reaction centre.
Resumo:
Cyanobacteria are able to regulate the distribution of absorbed light energy between photo systems 1 and 2 in response to light conditions. The mechanism of this regulation (the state transition) was investigated in the marine cyanobacterium Synechococcus sp. strain PCC 7002. Three cell types were used: the wild type, psaL mutant (deletion of a photo system 1 subunit thought to be involved in photo system 1 trimerization) and the apcD mutant (a deletion of a phycobilisome subunit thought to be responsible for energy transfer to photo system 1). Evidence from 77K fluorescence emission spectroscopy, room temperature fluorescence and absorption cross-section measurements were used to determine a model of energy distribution from the phycobilisome and chlorophyll antennas in state 1 and state 2. The data confirm that in state 1 the phycobilisome is primarily attached to PS2. In state 2, a portion of the phycobilisome absorbed light energy is redistributed to photo system 1. This energy is directly transferred to photo system 1 by one of the phycobilisome terminal emitters, the product of the apcD gene, rather than via the photo system 2 chlorophyll antenna by spillover (energy transfer between the photo system 2 and photo system 1 chlorophyll antenna). The data also show that energy absorbed by the photo system 2 chlorophyll antenna is redistributed to photo system 1 in state 2. This could occur in one of two ways; by spillover or in a way analogous to higher plants where a segment of the chlorophyll antenna is dissociated from photo system 2 and becomes part of the photo system 1 antenna. The presence of energy transfer between neighbouring photo system 2 antennae was determined at both the phycobilisome and chlorophyll level, in states 1 and 2. Increases in antenna absorption cross-section with increasing reaction center closure showed that there is energy transfer (connectivity) between photosystem 2 antennas. No significant difference was shown in the amount of connectivity under these four conditions.
Resumo:
The cr ystal structure of the compound 2-benzoylethylidene-3-(2,4- dibromophenyl)-2,3-dihydro-5-phenyl-l,3,4-thiadiazole* C23H16Br2NZOS (BRMEO) has been determined by using three dimensiona l x-ray diffraction data. The crys tal form is monoclinic, space group P21/c, a = 17.492(4), o -.t' 0 R 0 b =: 16.979(1), c = 14.962(1) A, "X. =o= 90 ',= 106.46(1) , z = 8, graphite-monochromatized Mo~ rad iation, Jl= 0.710J3~, D = 1.62g/cc and o D = 1.65g/cc. The data were col lected on ~ Nonius CAD-4 c diffractometer. The following atoms were made anisotropic: Br, S, N, 0, C7, and C14-C16 for each i ndependent molecu le ; the rest were left isotropic. For 3112 independent refl ec tions with F > 6G\F), R == 0.057. The compound has two independent molecules within the asymmetric unit. Two different conformers were observed which pack well together. /l The S---O interaction distances of 2.493(6) and 2 . 478(7) A were observed for molecules A and B respectively. These values are consistent with earlier findings for 2-benzoylmethylene-3-(2,4-dibromophenyl)- ~~ 2,3-dihydro-5-phenyl-l,3,4-thiadiazole C22H14Br2N20S (BRPHO) and 2-benzoylpropylidene-3-(2,4-dibromophenyl)-2,3-dihydroiii ,'r 5-phenyl-l,3,4-thiadiazole C24H18Br2N20S (BRPETO ) where S---O distances are l ess than the van der Waals (3.251\) but greater than those expected for () a single bond (1.50A). From the results and the literature it appears obvious that the energy/reaction coordinate pathway has a minimum between the end structures (the mono- and bicyclic compounds). * See reference (21) for nomenclature.
Resumo:
Decomposition and side reactions of, and the synthetic use of, pentafluorophenylmagnesium bromide and pentafluorophenyllithium have been investigated using G,C9/M.S, techniques• Their reactions with reagents such as CgF^X (X - H, F, CI, Br, 1), C6F4X2 (X - H, CI)f C6F3C13, C6H6. (CgX5)3P (X = H, F), (C6X5)3P=0 (X = H, F), (CgX5)Si (CH3)3 (X = H, F) and (CH0K SiCl , n = 1,2, in ether or ether/n-hexane were studied• In addition to the principal reaction of synthetic use, namely the replacement of a halogen by a pentafluorophenyl group, two types of side reactions were observed* These were (i) intermolecular loss of LiF via a nucleophilic substitution, and (ii) intramolecular loss of LiF, followed by the addition of either inorganic salts such as lithium or magnesium halides, or organometal compounds such as organolithium or organo-Grigaard* G.C«/M.S. techniques were routinely employed to study complicated reaction mixtures. Although mass spectrometry alone has disadvantages for the identification of isomers, deduction of the most probable pathway often helps overcome this problem.
Resumo:
Rates and products of the oxidation of diphenyl sulfide, phenyl methyl sulfide, p-chlorophenyl methyl sulfide and diphenyl sulfoxide have been determined. Oxidants included t-Bu02H alone, t-Bu02H plus molybdenum or vanadium catalysts and the molybdenum peroxo complex Mo0(02)2*HMPT. Reactions were chiefly carried out in ethanol at temperatures ranging from 20° to 65°C. Oxidation of diphenyl sulfide by t-Bu02H in absolute ethanol at 65°C followed second-order kinetics with k2 = 5.61 x 10 G M~1s"1, and yielded only diphenyl sulfoxide. The Mo(C0)g-catalyzed reaction gave both the sulfoxide and the sulfone with consecutive third-order kinetics. Rate = k3[Mo][t-Bu02H][Ph2S] + k^[Mo][t-Bu02H][Ph2S0], where log k3 = 12.62 - 18500/RT, and log k^ = 10.73 - 17400/RT. In the absence of diphenyl sulfide, diphenyl sulfoxide did not react with t-Bu02H plus molybdenum catalysts, but was oxidized by t-Bu02H-V0(acac)2. The uncatalyzed oxidation of phenyl methyl sulfide by t-Bu02H in absolute ethanol at 65°C gave a second-order rate constant, k = 3.48 x 10~"5 M^s""1. With added Mo(C0)g, the product was mainly phenyl methyl sulfoxide; Rate = k3[Mo][t-Bu02H][PhSCH3] where log k3 = 22.0 - 44500/RT. Both diphenyl sulfide and diphenyl sulfoxide react readily with the molybdenum peroxy complex, Mo0(02)2'HMPT in absolute ethanol at 35°C, yielding diphenyl sulfone. The observed features are mainly in agreement with the literature on metal ion-catalyzed oxidations of organic compounds by hydroperoxides. These indicate the formation of an active catalyst and the complexation of t-Bu02H with the catalyst. However, the relatively large difference between the activation energies for diphenyl sulfide and phenyl methyl sulfide, and the non-reactivity of diphenyl sulfoxide suggest the involvement of sulfide in the production of an active species.
Resumo:
The proce-ss ofoxygenic photosynthesis is vital to life on Earth. the central event in photosynthesis is light induced electron transfer that converts light into energy for growth. Ofparticular significance is the membrane bound multisubunit protein known as Photosystem I (PSI). PSI is a reaction centre that is responsible for the transfer of electrons across the membrane to reduce NADP+ to NADPH. The recent publication ofa high resolution X-ray structure of PSI has shown new information about the structure, in particular the electron transfer cofactors, which allows us to study it in more detail. In PSI, the secondary acceptor is crucial for forward electron transfer. In this thesis, the effect of removing the native acceptor phylloquinone and replacing it with a series of structurally related quinones was investigated via transient electron paramagnetic resonance (EPR) experiments. The orientation of non native quinones in the binding site and their ability to function in the electron transfer process was determined. It was found that PSI will readily accept alkyl naphthoquinones and anthraquinone. Q band EPR experiments revealed that the non-native quinones are incorporated into the binding site with the same orientation of the headgroup as in the native system. X band EPR spectra and deuteration experiments indicate that monosubstituted naphthoquinones are bound to the Al site with their side group in the position occupied by the methyl group in native PSI (meta to the hydrogen bonded carbonyl oxygen). X band EPR experiments show that 2, 3- disubstituted methyl naphthoquinones are also incorporated into the Al site in the same orientation as phylloquinone, even with the presence of a halogen- or sulfur-containing side chain in the position normally occupied by the phytyl tail ofphylloquinone. The exception to this is 2-bromo-3-methyl --.- _. -. - -- - - 4 _._ _ _ - _ _ naphthoquinone which has a poorly resolved spectrum, making determination of the orientation difficuh. All of the non-native quinones studied act as efficient electron acceptors. However, forward electron transfer past the quinone could only be demonstrated for anthraquinone, which has a more negative midpoint potential than phylloquinone. In the case of anthraquinone, an increased rate of forward electron transfer compared to native PSI was found. From these results we can conclude that the rate ofelectron transfer from Al to Fx in native PSI lies in the normal region ofthe Marcus Curve.
The kinetics and solvent effects on the thermal decomposition of isopropyl peroxide and 1, 2-dioxane
Resumo:
Rates of H2 formation have been determined for the thermal decomposition of isopropyl peroxide at l30o-l50oC in toluene and methanol and at l400C in isopropyl alcohol and water. Product studies have been carried out at l400C in these solvents. The decomposition of isopropyl peroxide was shown to be unimolecular with energies of activation in toluene, and methanol of 39.1, 23.08 Kcal/mole respectively. It has been shown that the rates of H2 formation in decomposition of isopropyl peroxide are solvent dependent and that the ~ vs "'2';' values (parameters for solvent polarity) givesastraight line. Mechanisms for hydrogen production are discussed which satisfactorily explain the stabilization of the six-centered transition state by the solvent. One possibility is that of conformation stabilization by solvent and the other, a transition state with sufficient ionic character to be stabilized by a polar solvent. Rates of thermal decomposition of 1,2-dioxane in tert-butylbenzene at l40o-l70oC have been determined. The activation energy was found to be 33.4 Kcal/mole. This lower activation energy, compared to that for the decomposition of isopropyl peroxide in toluene (39.1 Kcal/mole) has been explained in terms of ring strain. Decomposition of 1,2 dioxane in MeOH does not follow a first order reaction. Several mechanisms have been suggested for the products observed for decomposition of 1;2-dioxane in toluene and methanol.
Resumo:
Iridium complexes with bidentate P,N ligands represent a class of catalysts that significantly expand the application range of asymmetric hydrogenation. New substrate classes, for which there have previously been no suitable catalysts, can now be efficiently hydrogenated in high conversion and enantioselectivity. These substrates are often of synthetic importance, thus iridium catalysis represents a significant advance in the field of asymmetric catalysis. Planar chiral ferrocenyl aminophosphine ligands in which both heteroatoms were directly bound to the cyclopentadienyl ring were prepared by BF3-activated lithiationsubstitution in the presence of a chiral diamine in 49-59% yield and 75-85% enantiomeric excess. Some of these ligands were recrystallized to enantiomeric purity via ammonium fluoroborate salt formation of the phosphine sulfide. A crystal structure of one of these compounds was obtained and features an intramolecular hydrogen bond between the nitrogen, hydrogen, and sulfur atoms. Neutralization, followed by desulfurization, provided the free ligands in enantiomeric purity. Iridium complexes with these ligands were formed via reaction with [Ir(COD)Clh followed by anion exchange with NaBArF. These complexes were successfully applied in homogeneous hydrogenation of several prochiral substrates, providing products in up to 92% enantiomeric excess. Variation of the dimethyl amino group to a pyrrolidine group had a negative effect on the selectivity of hydrogenation. Variation of the substituents on phosphorus to bulkier ortho-tolyl groups had a positive effect, while variation to the more electron rich dicyclohexyl phosphine had a negative effect on selectivity.
Resumo:
The natural abundance of the N-heterocycle containing compounds has pushed the synthetic community toward the invention of new synthetic methods that result in the structural diversity of N-heterocycles. Among this, is the efficient and highly selective diamine mediated asymmetric lithiation process. Amongst the diamine chiral ligands, (-)-sparterine, which is a naturally occurring alkaloid proved to be an efficient one. Many successful, good yielding and highly selective lithiation reactions have been accomplished with the mediation by this chiral diamine base. Although, there are some examples of experimental and theoretical mechanistic studies in the literature, there is a lack of detailed understanding as to how it exactly induces the chirality. In this thesis is described a systematic investigation of how (-)-sparteine influences the stereoselectivity in the course of asymmetric lithiation reaction. This led us to the establishment of the function of A-ring’s β-CH2 effect and D-ring effect. Consequently, the importance of the A-ring and D-ring portions of (-)-sparteine in the stereoselectivity is unraveled. Another part of this thesis deals with the asymmetric lithiation of BF3-activated N,N- dimethylaminoferrocene in the presence of (1R, 2R)-N1,N2-bis(3,3-dimethylbutyl)-N1,N2-dimethylcyclohexane-1,2-diamine ( a (R,R)-TMCDA surrogate) with i-PrLi. Computational findings were in full accord with the experimental observations. Subsequently, the theoretically provided insights into the mechanism of the reaction were exploited in computational design of a new ligand. Unfortunately, the outcome of this design was not experimentally robust and an updated approach towards a successful design was explained.
Resumo:
(A) In recent years, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) fluorophores have attracted considerable interest due to their unique photochemical properties. However detailed studies on the stability of BODIPY and analogues under acidic and basic conditions have been lacking. Thus the stability of a series of BODIPY analogues in acidic (di- and trichloroacetic acid) and basic (aqueous ammonium hydroxide) conditions was investigated using 11B NMR spectroscopy. Among the analogues tested, 4,4-diphenyl BODIPY was the most stable under the conditions used in the experiments. It was found that reaction of 4,4-dimethoxy BODIPY with dichloroacetic acid gave mixed anhydride 4,4-bis(dichloroacetoxy) BODIPY in good yields. Treatment of the latter mixed anhydride with alcohols such as methanol and ethanol in the presence of a base afforded corresponding borate esters, whereas treatment with 1,2-diols such as ethylene glycol and catechol in the presence of a base gave corresponding cyclic borate esters. Furthermore treatment of 4,4-difluoro-8-methyl-BODIPY with secondary amines in dihalomethane resulted in carbon–carbon bond formation at the meso-methyl position of BODIPY via Mannich-type reactions. The resulting modified BODIPY fluorophores possess high fluorescent quantum yields. Five BODIPY analogues bearing potential ion-binding moieties were synthesized via this Mannich-type reaction. Among these, the BODIPY bearing an aza-18-crown-5 tether was found to be selective towards copper (II) ion, resulting in a large blue shift in absorption and sharp fluorescent quenching, whereas aza-15-crown-4 analogue was selected towards fluoride ion, leading to effective florescent quenching and blue shift. (B) Peptide nucleic acids (PNA), as mimics of natural nucleic acids, have been widely applied in molecular biology and biotechnology. Currently, the preparation of PNA oligomers is commonly achieved by a coupling reaction between carboxyl and amino groups in the presence of an activator. In this thesis attempts were made towards the synthesis of PNA through the Staudinger ligation reactions between C-terminal diphenylphosphinomethanethiol thioesters and N-terminal α-azido PNA building blocks.
Resumo:
The present thesis outlines the preparation of a 7-membered guanidine. Initial efforts to obtain this guanidine via 2-chloro-1,3-dimethylimidazolinium chloride induced ring forming chemistry failed to provide the target in a reproducible fashion. Changing strategies, we were able to obtain the desired guanidine through CuCl mediated amination of a 7-membered thiourea intermediate to arrive at the target. In addition, the catalytic activity of this compound was evaluated in a vinylogous aldol reaction of dibromofuranone and four aromatic aldehydes to generate chiral γ-butenolides with modest to good enantiomeric excess. It was found that electron-poor aldehydes resulted in higher, 81% ee, whereas electron rich aldehydes led to low, 41% ee, levels of enantiomeric excess.
Resumo:
The first example of a [5+2] cycloaddition reaction wherein the olefin of the vinylcyclopropyl moiety is constrained in a carbocycle was explored, and possible reasons on the lack of reactivity of the substrate were studied. A simple model substrate was synthesized and subjected to cycloaddition conditions to determine if the reason for the lack of reactivity was related to the complexity of the substrate, or if the lack of “conjugative character” of the cyclopropyl ring with respect to the olefin is responsible. A more complex bicyclic substrate possessing an angular methyl group at the ring junction was also synthesized and explored, with evidence supporting the current theory of deconjugation of the cyclopropyl moiety.
Resumo:
This thesis describes the chemoenzymatic synthesis of three morphine alkaloids. The total synthesis of dihydrocodeine and hydrocodone was accomplished starting from bromobenzene in 16 and 17 steps, respectively. The key steps included a microbial oxidation of bromobenzene by E. coli JM109 (pDTG601A), a Kazmaier-Claisen rearrangement of glycinate ester to generate C-9 and C-14 stereo centers, a Johnson-Claisen rearrangement to set the C-13 quaternary center, and a C-10/C-11 ring closure via a Friedel-Crafts reaction. In addition, the total synthesis of ent-hydromorphone starting from β-bromoethylbenzene in 12 steps is also described. The key reactions included the enzymatic dihydroxylation of β-bromoethylbenzene to the corresponding cis-cyclohexadienediol, a Mitsunobu reaction, and an oxidative dearomatization followed by an intramolecular [4+2] cycloaddition.