3 resultados para pillaring and silicoaluminate residue
em Brock University, Canada
Resumo:
Catalase dismutes H20 2 to O2 and H20. In successive twoelectron reactions H20 2 induces both oxidation and reduction at the heme group. In the first step the protoheme prosthetic group of beef liver catalase forms compound I, in which the heme has been oxidized from Fe3+ to Fe4+=0 and a porphyrin radical has been created. Compound II is formed by the oneelectron reduction of comp I. It retains Fe4+=0 but lacks the porphyrin radical and is catalytically inert. Molecular structures are available for Escherichia coli Hydroperoxidase II, Micrococcus Iysodeiktus, Penicillium vitale and beef liver enzymes, which contain different hemes and heme pockets. In the present work, the pockets and substrate access channels of protoheme (beef liver & Micrococcus) and heme d (HPII of E. coli and Penicillium) catalases have been analysed using Quanta™ and CharmMTM molecular modeling packages on the Silicon Graphics Iris Indigo 2 computer. Experimental studies have been carried out with two catalases, HPII (and its mutants) and beef liver. Fluoride and formate' are inhibitors of both enzymes, and their binding is modulated by the heme and by distal residues N201 & H128. Both HPII and beef liver enzymes form compound I with H202 or peracetate. The reduction of beef liver enzyme compound I to II and the decay of compound II are accelerated by fluoride. The decay of compound II is also accelerated by formate, and this reagent acts as a 2-electron donor towards compound I of both enzymes. It is concluded that heme d enzymes (Penicillium and HPII of E. coli) are formed by autocatalytic transformation of protoheme in a modified pocket which contains a characteristic serine residue as well as a partially occluded heme channel. They are less active than protoheme enzymes but also do not form the inactive compound II species. Binding of peroxide as well as fluoride and formate is prevented by mutation of H128 and modulated by mutation of N201.
Resumo:
Catalase is the enzyme which decomposes hydrogen peroxide to water and oxygen. Escherichia coli contains two catalases. Hydroperoxidase I (HPI) is a bifunctional catalase-peroxidase. Hydroperoxidase II (HPII) is only catalytically active toward H202. Expression of the genes encoding these proteins is controlled by different regimes. HPJI is thought to be a hexamer, having one heme d cis group per enzymatic subunit. HPII wild type protein and heme containing mutant proteins were obtained from the laboratory of P. Loewen (Univ. of Manitoba). Mutants constructed by oligonucleotidedirected mutagenesis were targeted for replacement of either the His128 residue or the Asn201 residue in the vicinity of the HPII heme crevice. His128 is the residue thought to be analogous to the His74 distal axial ligand of the heme in the bovine liver enzyme, and Asn201 is believed to be a residue critical to the function of the enzyme because of its role in orienting and interacting with the substrate molecule. Investigation of the nature of the hemes via absorption spectroscopy of the unmodified catalase proteins and their derived pyridine hemochromes showed that while the bovine and Saccharomyces cerevisiae catalase enzymes are protoheme-containing, the HPII wild type protein contains heme d, and the mutant proteins contain either solely protoheme, or heme d-protoheme mixtures. Cyanide binding studies supported this, as ligand binding was monophasic for the bovine, Saccharomyces cerevisiae, and wild type HPII enzymes, but biphasic for several of the HPII mutant proteins. Several mammalian catalases, and at least two prokaryotic catalases, are known to be NADPH binding. The function of this cofactor appears to be the prevention of inactivation of the enzyme, which occurs via formation of the inactive secondary catalase peroxide compound (compound II). No physiologically plausible scheme has yet been proposed for the NADPH mediation of catalase activity. This study has shown, via fluorescence and affinity chromatography techniques, that NADPH binds to the T (Typical) and A (Atypical) catalases of Saccharomyces cerevisiae, and that wild type HPII apparently does not bind NADPH. This study has also shown that NADPH is unlike any other hydrogen donor to catalase, and addresses its features as a unique donor by proposing a mechanism whereby NADPH is oxidized and catalase is protected from inactivation via the formation of protein radical species. Migration of this radical to a position close to the NADPH is also proposed as an adjunct hypothesis, based on similar electron migrations that are known to occur within metmyoglobin and cytochrome c peroxidase when reacted with H202. Validation of these hypotheses may be obtained in appropriate future experiments.
Resumo:
The dependence of the electron transfer (ET) rate on the Photosystem I (PSI) cofactor phylloquinone (A1) is studied by time-resolved absorbance and electron paramagnetic resonance (EPR) spectroscopy. Two active branches (A and B) of electron transfer converge to the FX cofactor from the A1A and A1B quinone. The work described in Chapter 5 investigates the single hydrogen bond from the amino acid residue PsaA-L722 backbone nitrogen to A1A for its effect on the electron transfer rate to FX. Room temperature transient EPR measurements show an increase in the rate for the A1A- to FX for the PsaA-L722T mutant and an increased hyperfine coupling to the 2-methyl group of A1A when compared to wild type. The Arrhenius plot of the A1A- to FX ET in the PsaA-L722T mutant suggests that the increased rate is probably the result of a slight change in the electronic coupling between A1A- and FX. The reasons for the non-Arrhenius behavior are discussed. The work discussed in Chapter 6 investigates the directionality of ET at low temperature by blocking ET to the iron-sulfur clusters FX, FA and FB in the menB deletion mutant strain of Synechocyctis sp. PCC 6803, which is unable to synthesize phylloquinone, by incorporating the high midpoint potential (49 mV vs SHE) 2,3-dichloro-1,4-naphthoquinone (Cl2NQ) into the A1A and A1B binding sites. Various EPR spectroscopic techniques were implemented to differentiate between the spectral features created from A and B- branch electron transfer. The implications of this result for the directionality of electron transfer in PS I are discussed. The work discussed in Chapter 7 was done to study the dependence of the heterogeneous ET at low temperature on A1 midpoint potential. The menB PSI mutant contains plastiquinone-9 in the A1 binding site. The solution midpoint potential of the quinone measures 100 mV more positive then wild-type phylloquinone. The irreversible ET to the terminal acceptors FA and FB at low temperature is not controlled by the forward step from A1 to FX as expected due to the thermodynamic differences of the A1 cofactor in the two active branches A and B. Alternatives for the ET heterogeneity are discussed.