2 resultados para physical parameters

em Brock University, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thecamoebian (testate amoeba) species diversity and assemblages in reclamation wetlands and lakes in northeastern Alberta respond to chemical and physical parameters associated with oil sands extraction. Ecosystems more impacted by OSPM (oil sands process-affected material) contain sparse, low-diversity populations dominated by centropyxid taxa and Arcella vulgaris. More abundant and diverse thecamoebian populations rich in difflugiid species characterize environments with lower OSPM concentrations. These shelled protists respond quickly to environmental change, allowing year-to-year variations in OSPM impact to be recorded. Their fossil record thus provides corporations with interests in the Athabasca Oil Sands with a potential means of measuring the progression of highlyimpacted aquatic environments to more natural wetlands. Development of this metric required investigation of controls on their fossil assemblage (e.g. seasonal variability, fossilization potential) and their biogeographic distribution, not only in the constructed lakes and wetlands on the oil sands leases, but also in natural environments across Alberta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Developmental coordination disorder (DCD) is a prevalent condition characterized by poor motor proficiency that interferes with a child‟s activities of daily living. Children with DCD often experience compromised health-related fitness components such as cardiorespiratory fitness (CRF). Purpose: To better understand the physical activity and fitness characteristics of children with probable DCD (pDCD), with a particular focus on CRF. Specifically: (1) to present a synopsis of current literature; (2) to determine the longitudinal trajectories of CRF; (3) to compare the submaximal CRF of children with and without pDCD. Methods: A comprehensive, systematic literature review was conducted of the recent available data on fitness and physical activity and pDCD (Chapter 2). This review provided the background for the other two studies included in this thesis. In Chapter 3, a prospective cohort design was used to assess how CRF in children with pDCD changes over time (56 months) relative to a group of typically developing controls. Using a nested-case control design, 63 subjects with pDCD and 63 matched controls from the larger sample were recruited to participate in the lab-based component of the study (Chapter 4). In this investigation CRF was examined using the oxygen cost of work (VO2) during an incremental test on a cycle ergometer. Results: The literature review showed that fitness parameters, including CRF and physical activity levels, were consistently reduced in children with pDCD. Chapter 3 demonstrated that the difference in CRF between children with pDCD and typically developing children is substantial, and that it tends to increase over time. Results from VO2 assessments showed that children with pDCD utilized more oxygen to sustain the same submaximal workloads compared to typically developing children. Conclusions: Findings from this thesis have made several important contributions to our understanding of children with pDCD. Since differences in CRF between children with and without pDCD tend to worsen over time, this adds to the argument that interventions intended to improve CRF may be appropriate for children with motor difficulties. This thesis also presented the first evidence suggesting that DCD involves higher energy expenditure, and could help explain why children with pDCD perform poorly on tasks requiring CRF.