2 resultados para photolysis

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maximum production rates ofs and decay kinetics for the hydrated electron, the indolyl neutral radical and the indole triplet state have been obtained in the microsecond, broadband (X > 260 nm) flash photolysis of helium-saturated, neutral aqueous solutions of indole, in the absence and in the presence of the solutes NaBr, BaCl2*2H20 and CdSCV Fluorescence spectra and fluorescence lifetimes have also been obtained in the absence and in the presence of the above solutes, The hydrated electron is produced monophotonically and biphotonically at an apparent maximum rate which is increased by BaCl2*2H20 and decreased by NaBr and CdSOif. The neutral indolyl radical may be produced monophotonically and biphotonically or strictly monophotonically at an apparent maximum rate which is increased by NaBr and CdSO^ and is unaffected by BaCl2*2H20. The indole triplet state is produced monophotonically at a maximum rate which is increased by all solutes. The hydrated electron decays by pseudo first order processes, the neutral indolyl radical decays by second order recombination and the indole triplet state decays by combined first and second order processes. Hydrated electrons are shown to react with H , H2O, indole, Na and Cd"*""1"". No evidence has been found for the reaction of hydrated electrons with Ba . The specific rate of second order neutral indolyl radical recombination is unaffected by NaBr and BaCl2*2H20, and is increased by CdSO^. Specific rates for both first and second order triplet state decay processes are increased by all solutes. While NaBr greatly reduced the fluorescence lifetime and emission band intensity, BaCl2*2H20 and CdSO^ had no effect on these parameters. It is suggested that in solute-free solutions and in those containing BaCl2*2H20 and CdSO^, direct excitation occurs to CTTS states as well as to first excited singlet states. It is further suggested that in solutions containing NaBr, direct excitation to first excited singlet states predominates. This difference serves to explain increased indole triplet state production (by ISC from CTTS states) and unchanged fluorescence lifetimes and emission band intensities in the presence of BaCl2*2H20 and CdSOt^., and increased indole triplet state production (by ISC from S^ states) and decreased fluorescence lifetime and emission band intensity in the presence of NaBr. Evidence is presented for (a) very rapid (tx ^ 1 us) processes involving reactions of the hydrated electron with Na and Cd which compete with the reformation of indole by hydrated electron-indole radical cation recombination, and (b) first and second order indole triplet decay processes involving the conversion of first excited triplet states to vibrationally excited ground singlet states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research was carried out to obtain a convenient route for the synthesis of [7_ 14C]-p-hydroxy benzaldehyde. Section 1 of the thesis includes a route involving intermediates with protecting groups like benzyl and methyl ethers of the phenols. The benzyl ethers afforded the product in relatively better yield. The overall synthesis involves four steps. Section 2 describes the reactions carried out directly on phenols, and a three step pathway is obtained for the synthesis of p-hydroxy benzaldehyde, which was repeated on labelled compounds to obtain [7_14C]p- hydroxy benzaldehyde. The synthesis involves the reaction of p-bromophenol with Cu14CN to yield [7_ 14C]-p-cyano phenol, which is then reduced to the aldehyde by means of a simple and clean photolysis method. The same route was tried out to get 3,4-dihydroxybenzaldehyde and was found to work equally well for the synthesis of this compound. Section 3 deals with the isolation of labelled alkaloids, corydaline, protopine and reticu1ine from [2-3H,1-14C]-dopamine (3H/ 14C ratio = 4) fed Corydalis solida. 3H/14C ratios in the labelled alkaloids were determined. The uncorrected values showed almost 50% loss of 3H relative to 14C in reticuline, and roughly 75% loss of the 3H relative to 14C in corydaline and protopine.