4 resultados para phosphatidylinositol

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human Class I phosphatidylinositol transfer proteins (PITPs) exists in two forms: PITPα and PITPβ. PITPs are believed to be lipid transfer proteins based on their capacity to transfer either phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane compartments in vitro. In Drosophila, the PITP domain is found to be part of a multi-domain protein named retinal degeneration B (RdgBα). The PITP domain of RdgBα shares 40 % sequence identity with PITPα and has been shown to possess PI and PC binding and transfer activity. The detailed molecular mechanism of ligand transfer by the human PITPs and the Drosophila PITP domain remains to be fully established. Here, we investigated the membrane interactions of these proteins using dual polarization interferometry (DPI). DPI is a technique that measures protein binding affinity to a flat immobilized lipid bilayer. In addition, we also measured how quickly these proteins transfer their ligands to lipid vesicles using a fluorescence resonance energy transfer (FRET)-based assay. DPI investigations suggest that PITPβ had a two-fold higher affinity for membranes compared to PITPα. This was reflected by a four-fold faster ligand transfer rate for PITPβ in comparison to PITPα as determined by the FRET assay. Interestingly, DPI analysis also demonstrated that PI-bound human PITPs have lower membrane affinity compared to PC-bound PITPs. In addition, the FRET studies demonstrated the significance of membrane curvature in the ligand transfer rate of PITPs. The ligand transfer rate was higher when the accepting vesicles were highly curved. Furthermore, when the accepting vesicles contained phosphatidic acid (PA) which have smaller head groups, the transfer rate increased. In contrast, when the accepting vesicles contained phosphoinositides which have larger head groups, the transfer rate was diminished. However, PI, the favorite ligand of PITPs, or the presence of anionic lipids did not appear to influence the ligand transfer rate of PITPs. Both DPI and FRET examinations revealed that the PITP domain of RdgBα was able to bind to membranes. However, the RdgBα PITP domain appears to be a poor binder and transporter of PC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the various functions of proteins in biological systems is the transport of small molecules, for this purpose proteins have naturally evolved special mechanisms to allow both ligand binding and its subsequent release to a target site; a process fundamental to many biological processes. Transport of Vitamin E (a-tocopherol), a lipid soluble antioxidant, to membranes helps in the protection of polyunsaturated fatty acids against peroxidative damage. In this research, the ligand binding characteristics of several members of the CRALTRIO family of lipid binding proteins was examined; the recombinant human a-Tocopherol Transfer Protein (a-TIP), Supernatant Protein Factor (SPF)ffocopherol Associated Protein (TAP), Cellular Retinaldehyde Binding Protein (CRALBP) and the phosphatidylinositol transfer protein from S. cerevisiae Sec 14p. Recombinant Sec 14p was expressed and purified from E. coli for comparison of tocopherol binding to the two other recombinant proteins postulated to traffic a-tocopherol. Competitive binding assays using [3H]-a-tocopherol and Lipidex-l000 resin allowed determination of the dissociation constants ~) of the CRAL-TRIO proteins for a-tocopherol and - 20 hydrophobic ligands for evaluation of the possible biological relevance of the binding interactions observed. The KIs (nM) for RRR-a-tocopherol are: a-TIP: 25.0, Sec 14p: 373, CRALBP: 528 and SPFffAP: 615. This indicates that all proteins recognize tocopherol but not with the same affinity. Sec 14p bound its native ligand PI with a KI of381 whereas SPFffAP bound PI (216) and y-tocopherol (268) similarly in contrast to the preferential binding ofRRR-a-tocopherol by a-TIP. Efforts to adequately represent biologically active SPFff AP involved investigation of tocopherol binding for several different recombinant proteins derived from different constructs and in the presence of different potential modulators (Ca+2, Mg+2, GTP and GDP); none of these conditions enhanced or inhibited a-tocopherol binding to SPF. This work suggests that only aTTP serves as the physiological mediator of a-tocopherol, yet structural homology between proteins allows common recognition of similar ligand features. In addition, several photo-affmity analogs of a-tocopherol were evaluated for their potential utility in further elucidation of a-TTP function or identification of novel tocopherol binding proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetes mellitus is a disorder of inadequate insulin action and consequent high blood glucose levels. Type 2 diabetes accounts for the majority of cases of the disease and is characterized by insulin resistance and relative insulin deficiency resulting in metabolic deregulation. It is a complex disorder to treat as its pathogenesis is not fully understood and involves a variety of defects including ~-cell failure, insulin resistance in the classic target tissues (adipose, muscle, liver), as well as defects in a-cells and kidney, brain, and gastrointestinal tissue. Present oral treatments, which aim at mimicking the effects of insulin, remain limited in their efficacy and therefore the study of the effects of novel compounds on insulin target tissues is an important area of research both for potentially finding more treatment options as well as for increasing our knowledge of metabolic regulation in health and disease. In recent years the extensively studied polyphenol, resveratrol, has been reported to have antidiabetic effects showing that it increases glucose uptake by skeletal muscle cells and prevents fatty acid-induced insulin resistance in vitro and in vivo. Naringenin, a citrus flavonoid with structural similarities to resveratrol, is reported to have antioxidan.t, antiproliferative, anticancer, and anti-inflammatory properties. Effects on glucose and lipid metabolism have also been reported including blood glucose and lipid lowering effects. However, whether naringenin has insulinlike effects is not clear. In the present study the effects of naringenin on glucose uptake in skeletal muscle cells are examined and compared with those of insulin. Naringenin treatment of L6 myotubes increased glucose uptake in a dose- and time dependent manner and independent of insulin. The effects of naringenin on glucose uptake achieved similar levels as seen with maximum insulin stimulation and its effect was additive with sub-maximal insulin treatment. Like insulin naringenin treatment did not increase glucose uptake in myoblasts. To elucidate the mechanism involved in naringenin action we looked at its effect on phosphatidylinositol 3-kinase (PI3K) and Akt, two signalling molecules that are involved in the insulin signalling cascade leading to glucose uptake. Naringenin did not stimulate basal or insulinstimulated Akt phosphorylation but inhibition of PI3K by wortmannin partially repressed the naringenin-induced glucose uptake. We also examined naringenin's effect on AMP-activated protein kinase (AMPK), a molecule that is involved in mediating glucose uptake by a variety of stimuli. Naringenin stimulated AMPK phosphorylation and this effect was not inhibited by wortmannin. To deduce the nature of the naringenin-stimulated AMPK phosphorylation and its impact on glucose uptake we examined the role of several molecules implicated in mod.ulating AMPK activity including SIRTl, LKB 1, and ca2+ Icalmodulin-dependent protein kinase kinase (CaMKK). Our results indicate that inhibition of SIRTI did not prevent the naringeninstimulated glucose uptake Of. AMPK phosphorylation; naringenin did not stimulate LKB 1 phosphorylation; and inhibition of CaMKK did not prevent naringeninstimulated glucose uptake. Inhibition of AMPK by compound C also did not prevent naringenin-stimulated glucose uptake but effectively inhibited the phosphorylation of AMPK suggesting that AMPK may not be required for the naringenin-stimulated glucose uptake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies have demonstrated that the oxysterol binding protein (OSBP) acts as a phosphatidylinositol phosphate (PIP)-sterol exchanger at membrane contact sites (MCS) of the endoplasmic reticulum (ER) and Golgi. OSBP is known to pick up phosphatidylinositol-4-phosphate (PI(4)P) from the ER, transfer it to the trans-Golgi in exchange for a cholesterol molecule that is then transferred from the trans-Golgi to the ER. Upon further examination of this pathway by Ridgway et al. (1), it appeared that phosphorylation of OSBP played a role in the localization of OSBP. The dephosphorylation state of OSBP was linked to Golgi localization and the depletion of cholesterol at the ER. To mimic the phosphorylated state of OSBP, the mutant OSBP-S5E was designed by Ridgway et al. (1). The lipid and sterol recognition by wt-OSBP and its phosphomimic mutant OSBP-S5E were investigated using immobilized lipid bilayers and dual polarization interferometry (DPI). DPI is a technique in which the protein binding affinity to immobilized lipid bilayers is measured and the binding behavior is examined through real time. Lipid bilayers containing 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and varying concentrations of PI(4)Ps or sterols (cholesterol or 25-hydroxycholesterol) were immobilized on a silicon nitride chip. It was determined that wt-OSBP binds differently to PI(4)P-containing bilayers compared to OSBP-S5E. The binding behavior suggested that wt-OSBP extracts PI(4)P and the change in the binding behavior, in the case of OSBP-S5E, suggested that the phosphorylation of OSBP may prevent the recognition and/or extraction of PI(4)P. In the presence of sterols, the overall binding behavior of OSBP, regardless of phosphorylation state, was fairly similar. The maximum specific bound mass of OSBP to sterols did not differ as the concentration of sterols increased. However, comparing the maximum specific bound mass of OSBP to cholesterol with oxysterol (25-hydroxycholesterol), OSBP displayed nearly a 2-fold increase in bound mass. With the absence of the wt-OSBP-PI(4)P binding behavior, it can be speculated that the sterols were not extracted. In addition, the binding behavior of OSBP was further tested using a fluorescence based binding assay. Using 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (22-NBD cholesterol), wt-OSBP a one site binding dissociation constant Kd, of 15 ± 1.4 nM was determined. OSBP-S5E did not bind to 22-NBD cholesterol and Kd value was not obtained.