4 resultados para phase separation

em Brock University, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrostatic forces between membranes containing charged lipids were assumed to play an important role in influencing interactions between membranes long before quantitative measurements of such forces were available. ~ur measurements were designed to measure electrostatic forces between layers of lecithin charged with lipi~s carrying ionizable head groups. These experiments have shown that the interactions between charged lipid bila.yere are dominated by electrostatic forces only at separations greater than 30 A. At smaller separations the repulsion between charged bilayers is dominated by strong hydration forces. The net repulsive force between egg lecithin bilayers containing various amounts of cherged lipids (phosphatidylglycerol (PG) 5,10 ano 50 mole%, phosphatidyli. nosi tol (PI) 10 mole% and sodium oleate (Na-Ol) 3,5 and 10 mole%, where mole% gives the ratio of the number of moles' of .charged lipid to the total number of moles of all lipids present in the sample) was stuoied with the help ('If the osmotic streas technique described by LeNeveu et aI, (1977). Also, the forces between pure PG were j_nvestigated in the same manner. The results have been plotted showing variation of force as a function of bilay- _ er separation dw• All curVes 90 obtained called force curves, were found to be similar in sha.pe, showing two distinct regions, one when dw<.30 A is a region cf very rapid iiivariation of force with separation ( it is the region dominated by hydre,tion force) and second when dw> 40 A is a region of very slow variation of force with separB.tion ( it is the region dominated by the electrostatic force). Between these two regions there exists a transition area in which, in most systems studied, a phase separation of lipids into fractions containing different amounts of charged groups, was observed. A qualitative analysis showed that our results were v/ell described by the simple electrostatic double -le.yer theory. For quantitative agreement between measured and calculated force curves however, the charge density for the calculations had to be taken as half of that given by the number density of charged lipids present in the lecithin bilayers. It is not clear at the moment what causes such low apparent degree of ionization among the charged head groups, and further study is needed in this area.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As Ca2+ and phosphatidylserine (PS) are known to induce the adhesion of bilayer vesicles and form collapsed multibilayer structures in vitro, it was the aim of this study to examine how that interaction and the resultant structures might be modified by neutral lipid species. X-ray diffraction data from multilamellar systems suggest that phosphatidylcholine (PC) and diacylglycerol (DG) might be in the collapsed phase up to a concentration of -30 mole % and that above this concentration these neutral lipids may modify Ca2+-induced bilayer interactions. Using large unilamellar vesicles and long incubations in excess Ca2+ to ensure equilibration, similar preliminary results were again obtained with PC, and also with phosphatidylethanolamine (PE). A combination of X-ray diffraction, thin-layer chromatography, density gradient centrifugation and freeze-fracture electron microscopy, used in conjunction with an osmotic stress technique, showed that (i) -30 mole % PC can be accomodated in the Ca(DOPS)2 phase; and (ii) higher PC levels modify Ca2+-induced bilayer interactions resulting in single lamellar phases of larger dimension and reduced tendency for REV collapse. Importantly, the data suggest that PC is dehydrated during the rapid collapse process leading. to Ca(DOPS)2 formation and exists with this dehydrated phase. Similar results were obtained using PS isolated from bovine brain. Preliminary studies using two different phosphatidylethanolamine (PE) species indicated accomodation by Ca(DOPS)2 of -25-30 mole 0/0 PE and bulk phase separation, of species favouring a non-bilayer phase, at higher levels. Significantly, all PS/PE vesicles appear to undergo a complete Ca2+-induced collapse, even with contents of up to 90 mole % PE. These data suggest that PE may have an important role in fusion mechanisms in vivo. In sum the data lend both structural and stoichiometric evidence for th~ existence of laterally segregated neutral lipid molecules within the same bilayers as PS domains exposed to Ca2+.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient way of synthesizing the deuterium labelled analogues of three methoxypyrazine compounds: 2-d3-methoxy-3-isopropylpyrazine, 2-d3-methoxy-3- isobutylpyrazine, and 2-d3-methoxy-3-secbutylpyrazine, has been developed. To confirm that the deuterium labels had been incorporated into the expected positions in the molecules synthesized, the relevant characterization by NMR, HRMS and GC/MS analysis was conducted. Another part of this work involved quantitative determination of methoxypyrazines in water and wines. Solid-phase extraction (SPE) proved to be a suitable means for the sample separation and concentration prior to GC/MS analysis.Such factors as the presence of ethanol, salt, and acid have been investigated which can influence the recovery by SPE for the pyrazines from the water matrix. Significantly, in this work comparatively simple fractional distillation was attempted to replace the conventional steam distillation for pre-concentrating a sample with a relatively large volume prior to SPE. Finally, a real wine sample spiked with the relevant isotope-labelled methoxypyrazines was quantitatively analyzed, revealing that the wine with 10 beetles per litre contained 138 ppt of 2-methoxy-3-isopropylpyrazine. Interestingly, we have also found that 2-methoxy-3-secbutylpyrazine exhibits an extremely low detection limit in GC/MS analysis compared with the detection limit of the other two methoxypyrazines: 2- methoxy-3-isopropylpyrazine and 2-methoxy-3-isobutylpyrazine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Factors affecting the detennination of PAHs by capillary GC/MS were studied. The effect of the initial column temperature and the injection solvent on the peak areas and heights of sixteen PAHs, considered as priority pollutants, USillg crosslinked methyl silicone (DB!) and 5% diphenyl, 94% dimethyl, 1% vinyl polysiloxane (DBS) columns was examined. The possibility of using high boiling point alcohols especially butanol, pentanol, cyclopentanol, and hexanol as injection solvents was investigated. Studies were carried out to optimize the initial column temperature for each of the alcohols. It was found that the optimum initial column temperature is dependent on the solvent employed. The peak areas and heights of the PAHs are enhanced when the initial column temperature is 10-20 c above the boiling point of the solvent using DB5 column, and the same or 10 C above the boiling point of the solvent using DB1 column. Comparing the peak signals of the PAHs using the alcohols, p-xylene, n-octane, and nonane as injection solvents, hexanol gave the greatest peak areas and heights of the PAHs particularly the late-eluted peaks. The detection limits were at low pg levels, ranging from 6.0 pg for fluorene t9 83.6 pg for benzo(a)pyrene. The effect of the initial column temperature on the peak shape and the separation efficiency of the PARs was also studied using DB1 and DB5 columns. Fronting or splitting of the peaks was obseIVed at very low initial column temperature. When high initial column temperature was used, tailing of the peaks appeared. Great difference between DB! and.DB5 columns in the range of the initial column temperature in which symmetrical.peaks of PAHs can be obtained is observed. Wider ranges were shown using DB5 column. Resolution of the closely-eluted PAHs was also affected by the initial column temperature depending on the stationary phase employed. In the case of DB5, only the earlyeluted PAHs were affected; whereas, with DB1, all PAHs were affected. An analytical procedure utilizing solid phase extraction with bonded phase silica (C8) cartridges combined with GC/MS was developed to analyze PAHs in water as an alternative method to those based on the extraction with organic solvent. This simple procedure involved passing a 50 ml of spiked water sample through C8 bonded phase silica cartridges at 10 ml/min, dried by passing a gentle flow of nitrogen at 20 ml/min for 30 sec, and eluting the trapped PAHs with 500 Jll of p-xylene at 0.3 ml/min. The recoveries of PAHs were greater than 80%, with less than 10% relative standard deviations of nine determinations. No major contaminants were present that could interfere with the recognition of PAHs. It was also found that these bonded phase silica cartridges can be re-used for the extraction of PAHs from water.