4 resultados para pest damage
em Brock University, Canada
Resumo:
The primary purpose of the current investigation was to develop an elevated muscle fluid level using a human in-vivo model. The secondary purpose was to determine if an increased muscle fluid content could alter the acute muscle damage response following a bout of eccentric exercise. Eight healthy, recreationally active males participated in a cross-over design involving two randomly assigned trials. A hydration trial (HYD) consisting of a two hour infusion of a hypotonic (0.45%) saline at a rate of 20mL/minVl .73m"^ and a control trial (CON), separated by four weeks. Following the infusion (HYD) or rest period (CON), participants completed a single leg isokinetic eccentric exercise protocol of the quadriceps, consisting of 10 sets of 10 repetitions with a one minute rest between each set. Muscle biopsies were collected prior to the exercise, immediately following and at three hours post exercise. Muscle analysis included determination of wet-dry ratios and quantification of muscle damage using toluidine blue staining and light microscopy. Blood samples were collected prior to, immediately post, three and 24 hours post exercise to determine changes in creatine kinase (CK), lactate dehydrogenase (LD), interleukin-6 (IL-6) and Creactive protein (CRP) levels. Results demonstrated an increased muscle fluid volume in the HYD condition following the infusion when compared to the CON condition. Isometric peak torque was significantly reduced following the exercise in both the HYD and CON conditions. There were no significant differences in the number of areas of muscle damage at any of the time points in either condition, with no differences between conditions. CK levels were significantly greater 24hour post exercise compared to pre, immediately and three hours post similarly in both conditions. LD in the HYD condition followed a similar trend as CK with 24 hour levels higher than pre, immediately post and three hours post and LD levels were significantly greater 24 hours post compared to pre levels in the CON condition, with no differences between conditions. A significant main effect for time was observed for CRP (p<0.05) for time, such that CRP levels increased consistently at each subsequent time point. However, CRP and IL-6 levels were not different at any of the measured time points when comparing the two conditions. Although the current investigation was able to successfully increase muscle fluid volume and an increased CK, LD and CRP were observed, no muscle damage was observed following the eccentric exercise protocol in the CON or HYD conditions. Therefore, the hypotonic infusion used in the HYD condition proved to be a viable method to acutely increase muscle fluid content in in-vivo human skeletal muscle.
Resumo:
The hypothesis that rapid y-aminobutyric acid (GABA) accumulation is a plant defense against phytophagous insects was investigated. Simulation of mechanical damage resulting from phytophagous insect activity increased soybean (Glycine max L.) leaf GABA 10- to 25-fold within 1 to 4 min. Pulverizing leaf tissue resulted in a value of 2. 15 (±O. 11 SE) ~mol GABA per gram fresh weight. Increasing the GABA levels in a synthetic diet from 1.6 to 2.6 Jlffiol GABA per gram fresh weight reduced the growth rates, developmental rates, total biomass (50% reduction), and survival rates (30% reduction) of cultured Oblique banded leaf-roller (OBLR) (Choristonellra rosacealla Harris) larvae. In field experiments OBLR larvae were found predominantly on young terminal leaves which have a reduced capacity to produce GABA in response to mechanical damage. Glutamate decarboxylase (GAD) is a cytosolic enzyme which catalyses the decarboxylation of L-Glu to GABA. GAD is a calmodulin binding enzyme whose activity is stimulated dramatically by increased cytosolic H+ or Ca2 + ion concentrations. Phytophagous insect activity will disrupt the cellular compartmentation of H+ and Ca2 +, activate GAD and subsequent GABA accumulation. In animals GABA is a major inhibitory neurotransmitter. The possible mechanisms resulting in GABA inhibited growth and development of insects are discussed.
Resumo:
Duchenne muscular dystrophy is a X-linked muscle disease, which leads to alterations in membrane phospholipid fatty acid (FA) composition and skeletal muscle damage. Increased membrane saturated FA in muscular dystrophy may suggest its association with increased susceptibility (as being the cause or consequence) to muscle damage. It was hypothesised that increased saturation is positively correlated to increased muscle damage. Correlations were hypothesized to be greater in extensor digitorum longus (EDL) at 20 weeks compared to soleus (SOL) at 10 weeks in dystrophin deficient (mdx) mice. Increased saturation was correlated to damage in EDL at both 10 and 20 weeks, with stronger correlations at 10 weeks. The results suggest that membrane PL FA composition may be associated with damage through two possible means. Increased saturation may be a cause or consequence of membrane damage. Association of membrane composition with eccentric induced damage has underscored the importance of saturated PL FA compositions in damage to dystrophic myofibres.
Resumo:
Port Dalhousie and Thorold Railway estimate of work done to date with an approximation of probable damage sustained by suspending the track, Aug. 22, 1854.