1 resultado para percutaneous coronary intervention
em Brock University, Canada
Resumo:
Physical inactivity poses a huge burden on Canada's health care system and is detrimental to the health of Canadians (Katzmarzyk & Janssen, 2004). Walking is a viable option for individuals to become physically active on a daily basis and is in fact the most commonly reported leisure time physical activity. It has been associated with many health benefits including weight loss/weight control, reduced risk of coronary artery disease and diabetes, lowered blood pressure, and improved psychological wellbeing (Brisson & Tudor-Locke, 2004). Specifically, individuals' stage of change, selfefficacy and health related quality of life (HRQL) are three psychological constructs that can be greatly improved with increased physical activity (Dishman, 1991; Penedo & Dahn, 2005; Poag & McAuley, 1992). Public health physical activity recommendations exist but many individuals find these difficult to meet due to overly busy lifestyles (Public Health Agency of Canada, 2003). Pedometers are inexpensive devices that can monitor individual bouts of walking so that the incorporation of physical activity into one's daily life is more plausible. They are also excellent tools for motivation, goalsetting, and immediate feedback (Brisson & Tudor-Locke, 2004). Since many people spend a large proportion of their time at their places of employment, workplaces have begun to be a common site for the development of physical activity interventions. These programs have been growing in popUlarity and have shown numerous benefits for both employees and employers (Voit, 2001). The purpose of the current study was to implement and evaluate the use of a pedometer-based physical activity intervention incorporating goal-setting and physical activity logs in a workplace setting, and to examine the relationship between different types of self-efficacy (task, barrier, and scheduling) and different phases of the intervention. Twenty male participants from a local steel manufacturing plant who exhibited health risk factors (e.g. hypertension, diabetes, etc.) were assigned to one of two groups (group A or group B). All participants were asked to wear pedometers on their waists, record their daily steps, set goals that were outlined on a step-tracking sheet (detennined by their baseline number of steps), and keep track of their work days, wakelbed time, sedentary time, and time spent doing other physical activity. Group A began the intervention immediately following the baseline measures, whereas group B continued with their regular routine for 4 weeks before beginning. Physiological measures (height, weight, blood pressure, relative body fat, waist and hip circumference, and body mass index) were taken and a battery of questionnaires that assessed barrier, task and scheduling self-efficacy, HRQL, and stage of change administered at baseline, week 5 (end of intervention for group A), week 9 (end of intervention for group B; follow-up for group A) and week 13 (follow-up for both groups). Results showed that this workplace physical activity intervention was successful at increasing the participants' daily steps, that task self-efficacy is a significant predictor of participants' exercise adherence during the initial stages of participation (intervention phase), and that the participants felt that this intervention was effective. Finally, further exploratory analyses showed that this intervention was effective for all participants, but most valuable for participants most in need of improvement - that is, those who were most sedentary prior to the intervention. This intervention is an inexpensive use of simple and effective tools (e.g. pedometers), has the potential to attract a wide variety of participants and become a pennanent part of any health promotion initiative.