3 resultados para pathological and biochemical characterizations

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to compare bone speed of sound (SOS) measured by quantitative ultrasound, circulating levels of IGF- 1 and biochemical markers of bone turnover in pre- (Pr) and post-menarcheal (Po) synchronized swimmers (SS) and controls (NS). Seventy participants were recruited: 8 PrSS, 22 PoSS, 20 PrNS, and 20 PoNS. Anthropometric measures of height, weight, skeletal maturity and percent body fat were taken, and dietary intake evaluated using 24-hour recall. Bone SOS was measured at the distal radius and mid-tibia and blood samples analyzed for IGF-1, osteocalcin, NTx, and 25-OH vitamin D. Results demonstrated maturational effects on bone SOS, IGF-1 and bone turnover (p<0.05), with no differences observed between SS and NS. Main effects were observed for a reduced caloric intake in SS compared to NS (p<0.05). Therefore, SS does not offer additive affects on bone strength but imparts no adverse affects to skeletal health in these athletes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Gram negative aerobic flagellated bacterium with fungal growth inhibitory properties was isolated from a culture of Trichoderma harzianum. According to its cultural characteristics and biochemical properties it was identified as a strain of Alcaligenes (aeca/is Castellani and Chalmers. Antisera prepared in Balbc mice injected with live and heat-killed bacterial cells gave strong reactions with the homologous immunogen and with ATCC 15554, the type strain of A. taeca/is, but not with Escherichia coli or Enterobacter aerogens in immunoprecipitation and dot immunobinding assays. Growth of Botrytis cinerea Pers. and several other fungi was significantly affected when co-cultured with A. taeca/is on solid media. Its detrimental effect on germination and growth of B. cinerea has been found to be associated with antifungal substances produced by the bacterium and released into the growth medium. A biotest for the antibiotic substances, based on their inhibitory effect on germination of B. cinerea conidia, was developed. This biotest was used to study the properties of these substances, the conditions in which they are produced, and to monitor the steps of their separation during extraction procedures. It has been found that at least two substances could be involved in the antagonistic interaction. One of these is a basic volatile substance and has been identified as ammonia. The other substance is a nonvolatile, dialysable, heat stable, polar compound released into the growth medium. After separation of growth medium samples by Sephadex G-10 column chromatography a single peak with a molecular weight below 700 Daltons exhibited inhibitory activity. From its behaviour in electrophoretic separation in agarose gels it seems that this is a neutral or slightly positively charged.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Madagascar periwinkle [Catharanthus roseus (L.) G. Don] is a commercially important horticultural flower species and is the only source for several pharmaceutically valuable monoterpenoid indole alkaloids (MIAs), including the powerful antihypertensive ajmalicine and the antineoplastic agents vincristine and vinblastine. While biosynthesis of MIA precursors has been elucidated, conversion of the common MIA precursor strictosidine to MIAs of different families, for example ajmalicine, catharanthine or vindoline, remains uncharacterized. Deglycosylation of strictosidine by the key enzyme Strictosidine beta-glucosidase (SGD) leads to a pool of uncharacterized reaction products that are diverted into the different MIA families, but the downstream reactions are uncharacterized. Screening of 3600 EMS (ethyl methane sulfonate) mutagenized C. roseus plants to identify mutants with altered MIA profiles yielded one plant with high ajmalicine, and low catharanthine and vindoline content. RNA sequencing and comparative bioinformatics of mutant and wildtype plants showed up-regulation of SGD and the transcriptional repressor Zinc finger Catharanthus transcription factor (ZCT1) in the mutant line. The increased SGD activity in mutants seems to yield a larger pool of uncharacterized SGD reaction products that are channeled away from catharanthine and vindoline towards biosynthesis of ajmalicine when compared to the wildtype. Further bioinformatic analyses, and crossings between mutant and wildtype suggest a transcription factor upstream of SGD and ZCT1 to be mutated, leading to up-regulation of Sgd and Zct1. The crossing experiments further show that biosynthesis of the different MIA families is differentially regulated and highly complex. Three new transcription factors were identified by bioinformatics that seem to be involved in the regulation of Zct1 and Sgd expression, leading to the high ajmalicine phenotype. Increased cathenamine reductase activity in the mutant converts the pool of SGD reaction products into ajmalicine and its stereoisomer tetrahydroalstonine. The stereochemistry of ajmalicine and tetrahydroalstonine biosynthesis in vivo and in vitro was further characterized. In addition, a new clade of perakine reductase-like enzymes was identified that reduces the SGD reaction product vallesiachotamine in a stereo-specific manner, characterizing one of the many reactions immediately downstream of SGD that determine the different MIA families. This study establishes that RNA sequencing and comparative bioinformatics, in combination with molecular and biochemical characterization, are valuable tools to determine the genetic basis for mutations that trigger phenotypes, and this approach can also be used for identification of new enzymes and transcription factors.