4 resultados para organic product

em Brock University, Canada


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rates and products of the oxidation of diphenyl sulfide, phenyl methyl sulfide, p-chlorophenyl methyl sulfide and diphenyl sulfoxide have been determined. Oxidants included t-Bu02H alone, t-Bu02H plus molybdenum or vanadium catalysts and the molybdenum peroxo complex Mo0(02)2*HMPT. Reactions were chiefly carried out in ethanol at temperatures ranging from 20° to 65°C. Oxidation of diphenyl sulfide by t-Bu02H in absolute ethanol at 65°C followed second-order kinetics with k2 = 5.61 x 10 G M~1s"1, and yielded only diphenyl sulfoxide. The Mo(C0)g-catalyzed reaction gave both the sulfoxide and the sulfone with consecutive third-order kinetics. Rate = k3[Mo][t-Bu02H][Ph2S] + k^[Mo][t-Bu02H][Ph2S0], where log k3 = 12.62 - 18500/RT, and log k^ = 10.73 - 17400/RT. In the absence of diphenyl sulfide, diphenyl sulfoxide did not react with t-Bu02H plus molybdenum catalysts, but was oxidized by t-Bu02H-V0(acac)2. The uncatalyzed oxidation of phenyl methyl sulfide by t-Bu02H in absolute ethanol at 65°C gave a second-order rate constant, k = 3.48 x 10~"5 M^s""1. With added Mo(C0)g, the product was mainly phenyl methyl sulfoxide; Rate = k3[Mo][t-Bu02H][PhSCH3] where log k3 = 22.0 - 44500/RT. Both diphenyl sulfide and diphenyl sulfoxide react readily with the molybdenum peroxy complex, Mo0(02)2'HMPT in absolute ethanol at 35°C, yielding diphenyl sulfone. The observed features are mainly in agreement with the literature on metal ion-catalyzed oxidations of organic compounds by hydroperoxides. These indicate the formation of an active catalyst and the complexation of t-Bu02H with the catalyst. However, the relatively large difference between the activation energies for diphenyl sulfide and phenyl methyl sulfide, and the non-reactivity of diphenyl sulfoxide suggest the involvement of sulfide in the production of an active species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented in this thesis is divided into three separate sections 4!> Each' 'section is involved wi th a different problem, however all three are involved with a microbial oxidation of a substrate~ A series of 'aryl substituted phenyl a.nd be,nzyl methyl sulphides were oxidized to the corre~pondi~g sulphoxides by 'Mo:rtierellai's'a'b'e'llina NRR.L17'S7 @ For this enzymic Qxidation, based on 180 labeled experiments, the oxygen atom is derived fr'orn the atmosphere and not from water. By way of an u~.traviolet analysis, the rates of oxidation, in terms of sulphox~ de appearance, were obtained and correlated with the Hatnmett p s~grna constants for the phenyl methyl sulphide series. A value of -0.67 was obtained and, is interpreted in terms of a mechanism of oxidation that involves an electrophilic attack on the sulphide sulphur by an enzymic ironoxygen activated complex and the conversion of the resulti!lg sulphur cation to sulphoxide. A series of alkyl phenyl selen~des have been incubated with the fu~gi, Aspergillus niger ATCC9l42, Aspergillus fO'etidus NRRL 337, MIIJisabellina NF.RLl757 and'He'lminth'osparium sp'ecies NRRL 4671 @l These fu?gi have been reported to be capable of carrying out the efficient oxidation of sulphide to sulphoxide, but in no case was there any evidence to supp'ort the occurrence of a microbialox,idation. A more extensive inves·t~gation was carried out with'M,e 'i's'a'b'e'l'l'i'na, this fu~gus was capable of oxidizing the correspondi~g sulphides to sulphoxi.de·s·$ Usi:ng a 1abel.edsubstra.te, [Methyl-l4c]-methyl phenyl selenide, the fate of this compound was invest~gated followi!lg an i'ncubation wi th Me isabellina .. BeSUldes th. e l4C-ana1YS1Q S-,'. a quant"ltta"lve selen'lum ana1Y"S1S was carried out with phenyl methyl selenide. These techniques indicate that thesel'enium was capable of enteri!1g thefu!1gal cell ef'ficiently but that s'ome metabolic cleav~ge of the seleni'um-carbon bond' may take plac'e Ie The l3c NMR shifts were assigned to the synthesized alkyl phenyl sulphides and selenides@ The final section involved the incubation ofethylben~ zene and p-e:rtr.hyltoluene wi th'M ~ 'isab'e'llina NRRL 17574b Followi~ g this incubation an hydroxylated product was isolated from the medium. The lH NMR and mass spectral data identify the products as I-phenylethanol and p-methyl-l-phenylethanol. Employi!lg a ch'iral shift re~gent,tri~ (3-heptafluorobutyl-dcamphorato)'- europium III, the enantiomeric puri ty of these products was invest~gated. An optical rotation measurement of I-phenylethanol was in ~greement with the results obtained with the chiral shift re~gen,te 'M.isabe'l'lina is capable of carryi~g out an hydroxylation of ethylbenzene and p-ethyltoluene at the ~ position.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toluene is converted to benzyl alcohol by the fungi Mortierella isabellina and Helminthosporium species; in the latter case, the product is further metabolized. Toluene-a -d 1 , toluene-a,a-d2, and toluene-a,a,a-d 3 have been used with Mortierellaisabellina in a series of experiments to determine both primary and secondary deuterium kinetic isotope effects for the enzymic benzylic hydroxylation reaction. The values obtained, intermolecular primary kH/kD = intramolecular p rim a r y kH r kD = 1. 0 2 + O. 0 5, and sec 0 n dar y k H I kD = 1. 37 .:!. 0.05, suggest a mechanism for the reaction involving benzylic proton removal from a radical intermediate in a non-symmetrical transition state. 2H NMR (30.7 MHz) studies using ethylbenzene-l,1-d 2 , 3 -fluoroethylbenzene-l,1-d 2 , 4 -fluoroethylbenzene-l,1-d 2 , and toluene-dB as substrates with Mortierella isabellina suggest, based on the observable differences in rates of conversion between the substrates, that the hydroxylation of hydrocarbons at the benzylic position proceeds via a one electron abstraction from the aromatic ring, giving a radical cation. A series of 1,3-oxathiolanes (eight) were incubated with Mortierella isabellina , Helminthosporium , Rhizopus arrhizus , and Aspergillus niger . Sulphoxides were obtained from Mortierella isabellina and Rhizopus arrhizus using the substrates 2-phenyl-, 2-methyl-2-phenyl-, and 2-phenyl-2-tert. butyl-l,3-oxathiolane. The relative stereochemistry of 2-methyl-2-phenyl-l,3-oxathiolan-l-oxide was assigned based on lH decoupling, n.O.e, 1 and H NMR experiments. The lH NMR (200 MHz) of the methylene protons of 2-methyl-2-phenyl-l,3-oxathiolan-l-oxide was used as a diagnostic standard in assigning the relative stereochemistry of 2-phenyl-l,3-oxathiolan-l-oxide and 2-phenyl-2-tert. butyl-l,3-oxathiolan-l-oxide. The sulphoxides obtained were consistent with an oxidation occurring from the opposite side of the molecule to the phenyl substituent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactions of 5,6- and 4,5-epoxycholestane derivatives with strong bases were investigated. Epoxidation of 3a-acetoxycholest-5-ene also gave a new compound along with the anticipated epoxides. Interconversions of the latter were observed. Some possible mechanisms of its formation and rearrangements have been pIioposed. No reaction was observed with any of the 5,6- and 4,5-steroidal epoxides employed in the present study, using potassium tertiary butoxide under refluxing conditions. n-Butyllithium reacted only with 5,6-epoxycholestanes bearing a ketal moiety at the C3 carbon. Opening of the ketal group was observed with n-butyllithium in the case of a ~-epoxide. The reaction was also investigated in the absence of epoxide functionality. A possible mechanism for the opening of ketal group has been proposed. Lithium diethylamide (LDEA) was found effective in rearranging 5,6- and 4,5-epoxides to their ~orresponding allylic alcohols. These rearrangements presumably proceed via syn-eliminations, however the possibility of a corresponding anti-elimination has not been eliminated. A substituent effect of various functional groups (R = H, OH, OCH2CH20) at C3 has-been observed on product distribution in the LDEApromoted rearrangements of the corresponding epoxides. No reaction of these epoxides was observed with lithium diisopropylamide (LDA) • In the second part of the project, several attempts were made towards the sYRthesis of deoxycorticoste~one~17,2l,2l~d3' a compound desirable for the 2l-dehydroxylation studies of deoxycorticosterone. Several routes were investigated, and some deuterium labelled pregnane derivatives were prepared in this regard. Microbial 21-hydroxylation of progesteronel7,21,21,2l- d4 by ~ niger led to loss of deuterium from C21 of the product. An effort was made to hydroxylate progesterone microbially under neutral condtions.