5 resultados para ore deposit
em Brock University, Canada
Resumo:
The formation of the Sar Cheshmeh porphyry Cu-Mo deposit is related to the culmination of calc-alkaline igneous activity in the Kerman region. The deposit comprises a suite of Late Cenozoic intrusive sub-volcanic and extrusive rocks emplaced into a folded series of Eocene andesitic lavas and pyroclastic sediments. The earliest stage of magmatism was emplacement of a large granodiorite stock about 29 m.y.b.p. This was followed by intrusion of two separate porphyritic bodies at 15 (Sar Cheshrneh porphyry) and 12 m.y.b.p. (Late porphyry) and a series of sub-volcanic dikes between 12 and 9 m.y.b.p. Magmatic activity terminated with multi-phase extrusion of a Pelean dacitic dome complex between 10 and 2.8 m.y.b.p. The country rocks and the earlier porphyritic intrusions are pervasively altered to biotite-rich potassium silicate (metasomatic and hydrothermal) sericite-clay, phyllic and chlorite-clay, argillic assemblages. These grade outwards to an extensive propylitic zone. Within the ore body, the later intra-. and post-mineral dikes only reach the propylitic grade. At least three different sets of quartz veins are present, including a sericite-chlorite-quartz set which locally retrogrades pervasive secondary biotite to sericite. In the hypogene zone, metasomatic and hydrothermal alteration is related to all stages of magmatism but copper mineralization and veining are restricted to a period of 15 to 9 m.y.b.p.related to the early intrusive phases. The copper mineralization and silicate alteration do not fit a simple annular ring model but have been greatly modified by, 1. The existence of an ititial, outer ring, of metasomatic alteration overprinted by an inner.ring of hydrothermal alteration and, 2. later extensive dilating effects of intra- and post-mineral dikes. The hydrothermal clay mineral assemblage in the hypogene zone is illite-chlorite-kaolinite-smectite (beidellite). Preliminary studies indicate that the amount of each of these clays varies vertically and that hydrothermal zonation of clay minerals is possible. However, these minerals alter to illite-kaolinite assemblages in the supergene sulfide zone and to more kaolinite-rich assemblages in the supergene leached zone. Hydrothermal biotite breaks down readily in the supergene zone and is not well preserved in surface outcrops. The distribution of copper minerals in the supergene sulfide enrichment zone is only partly related to rock type being more dependent on topography and the availability of fractures.
Resumo:
The Sand Creek Prospect is located within the eastern exposed margin of the Coast Plutonic Complex. The occurrence is a plug and dyke porphyry molybdenum deposit. The rock types, listed in decreasing age: 1) metamorphlc schists and gneisses; 2) diorite suite rocks - diorite, quartz diorite, tonalite; 3) rocks of andesitic composition; 4) granodiorites, coarse porphyritic granodiorite, quartzfeldspar porphyry, feldspar porphyry; and 5) lamprophyre. Hydrothermal alteration is known to have resulted from emplacement of the hornblende-feldspar porphyry through to the quartz-feldspar porphyry. Molybdenum mineralization is chiefly associated with the quartz-feldspar porphyry. Ore mineralogy is dominated by pyrite with subordinate molybdenite, chalcopyrite, covelline, sphalerite, galena, scheelite, cassiterite and wolframite. Molybdenite exhibits a textural gradation outward from the quartz-feldspar porphyry. That is, disseminated rosettes and rosettes in quartz veins to fine-grained molybdenite in quartz veins and potassic altered fractures to fine-grained molybdenite paint or 6mears in the peripheral zones. The quartz-feldspar porphyry dykes were emplaced in an inhomogeneous stress field. The trend of dykes, faults and shear zones is 0^1° to 063° and dips between 58° NW and 86* SE. Joint Pole distribution reflects this fault orientation. These late deformatior maxima are probably superimposed upon annuli representing diapiric emplacement of the plutons. A model of emplacement involving two magmatic pulses is given in the following sequence: Diorite pulse (i) dioritequartz diorite, (ii) tonalites; granodiorite pulse (iii) hornblende-fildspar microporphyry, hornblende/biotite porphyry, (iv) coarse grained granodiorite, (v) quartz-feldspar porphyry, (vi) feldspar porphyry, and (vii) lamprophyre. The combination of plutonic and coarse porphyritic textures, extensive propylitic overprinting of potassic alteration assemblages suggests that the. prospect represents the lower reaches of a porphyry system.
Resumo:
Presently non-commercial occurrences of Mississippi Valley-type ore assemblages in the Middle Silurian strata of the Niagara Peninsula have been studied. Based on this detailed study, a new poly-stage genetic model is proposed which relates ore mineralization in carbonate environments to the evolution of the sedimentary basin. Sulphide ore mineralization occurred during two episodes: 1. During the late diagenesis stage, which is characterized by compaction-maturation of the sediments, the initial mineralization took place by upward and outward movement of connate waters. Metals were probably supplied from all the sediments regardless of their specific lithologies. However, clay minerals were possibly the main contributors. The possible source of sulphur was from petroleum-type hydrocarbons presently mixed with the sediments at the site of ore deposition. Evidence for this is the fact that the greatest abundance of ore minerals is in petroliferous carbonates. The hydrocarbons probably represent liquids remaining after upward migration to the overlying Guelph-Salina reservoirs. The majority of sphalerite and galena formed during this period, as well as accessory pyrite, marcasite, chalcopyrite, chalcocite, arsenopyrite, and pyrrhotite; and secondary dolomite, calcite, celestite, and gypsum. 2. During the presently ongoing surface erosion and weathering phase, which is marked by the downward movement of groundwater, preexisting sulphides were probably remobilized, and trace amounts of lead and zinc were leached from the host material, by groundwaters. Metal sulphides precipitated at, or below, the water table, or where atmospheric oxygen could raise the Eh of groundwaters to the point where soluble metal complexes are unstable and native sulphur co-precipitates with sphalerite and galena. This process, which can be observed today, also results in the transport and deposition of the host rock material. Breakdown of pre-existing sulphide and sulphate, as well as hydrocarbon present in the host rock, provided sulphur necessary for sulphide precipitation. The galena and sphalerite are accompanied by dolomite, calcite, gypsum, anglesite, native sulphur and possibly zincite.
Resumo:
Landscape geochemical investigations were conducted upon portions of a natural uniform landscape in southern Norway. This consisted of sampling both soil profile samples and spruce tree twigs for the analysis of twelve chemical elements. These elements were cobalt, copper, nickel, lead, zinc, manganese, magnesium, iron, calcium, sodium, potassium and aluminum which were determined by atomic absorption analysis on standardized extraction techniques for both organic and inorganic materials. Two "landscape traverses" were chosen for a comparative study of the effects of varying landscape parameters upon the trace element distribution patterns throughout the landscape traverses. The object of this study was to test this method of investigation and the concept of an ideal uniform landscape under Norwegian conditions. A "control traverse" was established to represent uniform landscape conditions typical of the study area and was used to determine "normal" or average trace element distribution patterns. A "signal traverse" was selected nearby over an area of lead mineralization where the depth to bedrock is very small. The signal traverse provided an area of similar landscape conditions to those of the control traverse with significant differences in the bedrock configuration and composition. This study was also to determine the effect of the bedrock mineralization upon the distribution patterns of the twelve chemical elements within the major components of the two landscape traverses (i.e. soil profiles and tree branches). The lead distribution within the soils of the signal traverse showed localized accumulations of lead within the overburden with maximum values occurring within the organic A horizon of soil profile #10. Above average concentrations of lead were common within the signal traverse, however, the other elements studied were not significantly different from those averages determined throughout the soils of the control traverse. The spruce twig samples did not have corresponding accumulations of lead near the soil lead anomaly. This is attributable to the very localized nature of the lead dispersion pattern within the soils. This approach to the study of the geochemistry of a natural landscape was effective in establishing: a) average or "normal" trace element distribution patterns b) local variations in the landscape morphology and c) the effect of unusually high lead concentrations upon the geochemistry of the landscape (i.e. within the soil profiles and tree branches). This type of study provides the basis for further more intensive studies and serves only as a first approximation of the behaviour of elements within a natural landscape.
Resumo:
The interior layered deposit (ILD) in Ganges Chasma, Valles Marineris, is a 4.25 km high mound that extends approximately 110 km from west to east. The deposition, deformation, and erosion history of the Ganges ILD records aids in identifying the processes that formed and shaped the Chasma. To interpret structural and geomorphic processes acting on the ILD, multiple layer attitudes and layer thickness transects were conducted on the Ganges ILD. Mineralogical data was analyzed to determine correlations between materials and landforms. Layer thickness measurements indicate that the majority of layers are between 0.5 m and 4 m throughout the ILD. Three major benches dominate the Ganges ILD. Layer thicknesses increase at the ILD benches, suggesting that the benches are formed from the gradual thickening of layers. This indicates that the benches are depositional features draping over basement topography. Layer attitudes indicate overall shallow dips generally confined to a North-South direction that locally appear to follow bench topography. Layering is disrupted on a scale of 40 m to 150 m in 12 separate locations throughout the ILD. In all locations, underlying layering is disturbed by overlying folded layers in a trough-like geometry. These features are interpreted to have formed as submarine channels in a lacustrine setting, subsequently infilled by sediments. Subsequently, the channels were eroded to the present topography, resulting in the thin, curved layering observed. Data cannot conclusively support one ILD formation hypothesis, but does indicate that the Ganges ILD postdates Chasma formation. The presence of water altered minerals, consistently thin layering, and layer orientations provide strong evidence that the ILD formed in a lacustrine setting.