5 resultados para nucleon self-energy
em Brock University, Canada
Resumo:
The Zubarev equation of motion method has been applied to an anharmonic crystal of O( ,,4). All possible decoupling schemes have been interpreted in order to determine finite temperature expressions for the one phonon Green's function (and self energy) to 0()\4) for a crystal in which every atom is on a site of inversion symmetry. In order to provide a check of these results, the Helmholtz free energy expressions derived from the self energy expressions, have been shown to agree in the high temperature limit with the results obtained from the diagrammatic method. Expressions for the correlation functions that are related to the mean square displacement have been derived to 0(1\4) in the high temperature limit.
Resumo:
The frequency dependence of the electron-spin fluctuation spectrum, P(Q), is calculated in the finite bandwidth model. We find that for Pd, which has a nearly full d-band, the magnitude, the range, and the peak frequency of P(Q) are greatly reduced from those in the standard spin fluctuation theory. The electron self-energy due to spin fluctuations is calculated within the finite bandwidth model. Vertex corrections are examined, and we find that Migdal's theorem is valid for spin fluctuations in the nearly full band. The conductance of a normal metal-insulator-normal metal tunnel junction is examined when spin fluctuations are present in one electrode. We find that for the nearly full band, the momentum independent self-energy due to spin fluctuations enters the expression for the tunneling conductance with approximately the same weight as the self-energy due to phonons. The effect of spin fluctuations on the tunneling conductance is slight within the finite bandwidth model for Pd. The effect of spin fluctuations on the tunneling conductance of a metal with a less full d-band than Pd may be more pronounced. However, in this case the tunneling conductance is not simply proportional to the self-energy.
Resumo:
A generalization to the BTK theory is developed based on the fact that the quasiparticle lifetime is finite as a result of the damping caused by the interactions. For this purpose, appropriate self-energy expressions and wave functions are inserted into the strong coupling version of the Bogoliubov equations and subsequently, the coherence factors are computed. By applying the suitable boundary conditions to the case of a normal-superconducting interface, the probability current densities for the Andreev reflection, the normal reflection, the transmission without branch crossing and the transmission with branch crossing are determined. Accordingly the electric current and the differential conductance curves are calculated numerically for Nb, Pb, and Pb0.9Bi0.1 alloy. The generalization of the BTK theory by including the phenomenological damping parameter is critically examined. The observed differences between our approach and the phenomenological approach are investigated by the numerical analysis.
Resumo:
Polyglutamine is a naturally occurring peptide found within several proteins in neuronal cells of the brain, and its aggregation has been implicated in several neurodegenerative diseases, including Huntington's disease. The resulting aggregates have been demonstrated to possess ~-sheet structure, and aggregation has been shown to start with a single misfolded peptide. The current project sought to computationally examine the structural tendencies of three mutant poly glutamine peptides that were studied experimentally, and found to aggregate with varying efficiencies. Low-energy structures were generated for each peptide by simulated annealing, and were analyzed quantitatively by various geometry- and energy-based methods. According to the results, the experimentally-observed inhibition of aggregation appears to be due to localized conformational restraint placed on the peptide backbone by inserted prolines, which in tum confines the peptide to native coil structure, discouraging transition towards the ~sheet structure required for aggregation. Such knowledge could prove quite useful to the design of future treatments for Huntington's and other related diseases.
Resumo:
Previous research has found that victims of crime tend to exhibit asynchronous movement (e.g. Grayson & Stein, 1981), and the fact that victims display different body language suggests that they may be sending inadvertent signals to their own vulnerability (e.g. Murzynski & Degelman, 1996). Body language has also be en linked with s e l f identification as a victim (Wheeler et aI., 2009), and self-identification has be en found to act as a proxy for more severe victimization (Baumer, 2002) and greater fear of crime (Greenberg & Beach, 2004). The first prediction in the present study, then, was that self-perceived vulnerability would be correlated with body language, while number of previous victimizations mayor may not show the same relationship. Findings from the present study indicate that self-perceived vulnerability exhibits a positive correlation with the body language cues that approaches significance r (10) = .45,p =.07, one-tailed. Different types of victimization, however, were not significantly correlated with these cues. A second goal of the study was to examine the relationship between psychopathic traits and accuracy in judgments of vulnerability. Seventy male participants rated the vulnerability of 12 female targets filmed walking down a hallway who had provided selfratings of vulnerability. Individuals scoring higher on Factor 2 and total psychopathy were significantly less discrepant from target self-rat~ngs of vulnerability, r (64) = - .39,p < .001; r (64) = - .29,p >.01, respectively. The final purpose of this study was to determine which body language cues were mos t salient to raters when making judgments of vulnerability. Participants rated the apparent vulnerability of a target in 7 video clips portraying each body language cue in isolation and a natural walk. Results of repeated measures analyses indicate that the videos rated as most vulnerable to victimization were those displaying low energy and l a ck of synchrony, followed by wide stride, short stride, and stiffknees, while the video displaying ne ck stiffness did not receive significantly different ratings from the mode l ' s natural walk. Replication with a larger sample size is necessary to increase confidence in findings and implications.