2 resultados para nonlinear mixed effects models
em Brock University, Canada
Resumo:
This lexical decision study with eye tracking of Japanese two-kanji-character words investigated the order in which a whole two-character word and its morphographic constituents are activated in the course of lexical access, the relative contributions of the left and the right characters in lexical decision, the depth to which semantic radicals are processed, and how nonlinguistic factors affect lexical processes. Mixed-effects regression analyses of response times and subgaze durations (i.e., first-pass fixation time spent on each of the two characters) revealed joint contributions of morphographic units at all levels of the linguistic structure with the magnitude and the direction of the lexical effects modulated by readers’ locus of attention in a left-to-right preferred processing path. During the early time frame, character effects were larger in magnitude and more robust than radical and whole-word effects, regardless of the font size and the type of nonwords. Extending previous radical-based and character-based models, we propose a task/decision-sensitive character-driven processing model with a level-skipping assumption: Connections from the feature level bypass the lower radical level and link up directly to the higher character level.
Resumo:
The purpose of this study is to examine the impact of the choice of cut-off points, sampling procedures, and the business cycle on the accuracy of bankruptcy prediction models. Misclassification can result in erroneous predictions leading to prohibitive costs to firms, investors and the economy. To test the impact of the choice of cut-off points and sampling procedures, three bankruptcy prediction models are assessed- Bayesian, Hazard and Mixed Logit. A salient feature of the study is that the analysis includes both parametric and nonparametric bankruptcy prediction models. A sample of firms from Lynn M. LoPucki Bankruptcy Research Database in the U. S. was used to evaluate the relative performance of the three models. The choice of a cut-off point and sampling procedures were found to affect the rankings of the various models. In general, the results indicate that the empirical cut-off point estimated from the training sample resulted in the lowest misclassification costs for all three models. Although the Hazard and Mixed Logit models resulted in lower costs of misclassification in the randomly selected samples, the Mixed Logit model did not perform as well across varying business-cycles. In general, the Hazard model has the highest predictive power. However, the higher predictive power of the Bayesian model, when the ratio of the cost of Type I errors to the cost of Type II errors is high, is relatively consistent across all sampling methods. Such an advantage of the Bayesian model may make it more attractive in the current economic environment. This study extends recent research comparing the performance of bankruptcy prediction models by identifying under what conditions a model performs better. It also allays a range of user groups, including auditors, shareholders, employees, suppliers, rating agencies, and creditors' concerns with respect to assessing failure risk.