5 resultados para nematode diseases

em Brock University, Canada


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Involvement of ethylene in the etiology of tomato plants (Lycopersicon esculentum) infected with the root-knot nematode (Meloidogyne incognita) was investigated. Endogenous root concentrations of ethylene were not significantly different in uninfected resistant var. Anahu and susceptible var. Vendor plants. Exposure of resistant plants to high doses of infectious nematode larvae did not affect root ethylene concentrations during the subsequent 30 day period. The possibility that ethylene may be involved in the mechanism of resistance is therefore not supported by these experiments. In no experiments did ethylene concentrations in roots of susceptible plants increase significantly subsequent to ~ incognita infestation. This result is not consistent with the hypothesis in the literature which suggests that increased ethylene production accompanies gall formation. Growth of susceptible tomato plants was affected by ~ incognita infestation such that root weights increased (due to galling), stem heights decreased and top weights increased. The possibility that alterations in stem growth resulted from increased production of 'stress' ethylene is discussed. Growth of resistant plants was unaffected by exposure to high doses of ~ incognita and galls were never detected on the roots of these plants. Root ethane concentrations generally varied in parallel with root ethylene concentrations although ethane concentrations were without exception greater. In 4 of 6 experiments conducted ethane/ethylene ratios increased significantly with time. These results are discussed in the light of published data on the relationship between ethane and ethylene synthesis. The term infested is used throughout this thesis in reference to plants whose root systems had been exposed to nematodes and does not distinguish between the susceptible and resistant response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sugar beet cyst nematode, Heterodera schachtii, is a major agricultural pest. The disruption of the mating behaviour of this plant parasite in the field may provide a means of biological control, and a subsequent increase in crop yield. The H. schachtii female sex pheromone, which attracts homospecific males, was collected in an aqueous medium and isolated using high performance liquid chromatography. Characterization of the male-attractive material revealed that it was heat stable and water soluble. The aqueous medium conditioned by female H. schachtii was found to be biologically active and stimulated male behaviour in a concentration dependent manner. The activity of the crude pheromone was specific to males of H. schachtii and did not attract second stage juveniles. Results indicated that vanillic acid, a putative nematode pheromone, is not an active component of the H. schachtii sex pheromone. Male H. schachtii exhibited stylet thrusting, a poorly understood behaviour of the male, upon exposure to the female sex pheromone. This behaviour appeared to be associated with mate-finding and was used as a novel indicator of biological activity in bioassays. Serotonin, thought to be involved in the neural control of copulatory behaviour in nematodes, stimulated stylet thrusting. However, the relationship between stylet thrusting induced by the sex pheromone and stylet thrusting induced by serotonin is not clear. Extracellular electrical activity was recorded fi-om the anterior region of H. schachtii males during stylet thrusting, and appeared to be associated with this behaviour. The isolation of the female sex pheromone of H. schachtii may, ultimately, lead to the structural identification and synthesis of the active substance for use in a novel biological control strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study emerging diseases, I employed a model pathogen-host system involving infections of insect larvae with the opportunistic fungus Aspergillus flavus, providing insight into three mechanisms ofpathogen evolution namely de novo mutation, genome decay, and virulence factoracquisition In Chapter 2 as a foundational experiment, A. flavus was serially propagated through insects to study the evolution of an opportunistic pathogen during repeated exposure to a single host. While A. flavus displayed de novo phenotypic alterations, namely decreased saprobic capacity, analysis of genotypic variation in Chapter 3 signified a host-imposed bottleneck on the pathogen population, emphasizing the host's role in shaping pathogen population structure. Described in Chapter 4, the serial passage scheme enabled the isolation of an A. flavus cysteine/methionine auxotroph with characteristics reminiscent of an obligate insect pathogen, suggesting that lost biosynthetic capacity may restrict host range based on nutrient availability and provide selection pressure for further evolution. As outlined in Chapter 6, cysteine/methionine auxotrophy had the pleiotrophic effect of increasing virulence factor production, affording the slow-growing auxotroph with a modified pathogenic strategy such that virulence was not reduced. Moreover in Chapter 7, transformation with a virulence factor from a facultative insect pathogen failed to increase virulence, demonstrating the necessity of an appropriate genetic background for virulence factor acquisition to instigate pathogen evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high performance liquid chromatographic method employing two columns connected in series and separated~y·a.switching valve has been developed for the analysis of the insecticide/ nematicide oxamyl (methyl-N' ,N'-dimethyl-N-[(methylcarbamoyl) oxy]-l-thiooxarnimidate) and two of its metabolites. A variation of this method involving two reverse phase columns was employed to monitor the persistence and translocation of oxamyl in treated peach seedlings. It was possible to simultaneously analyse for oxamyl and its corresponding oxime (methyl-N',N'-dimethyl-N-hydroxy-l-thiooxamimidate}, a major metabolite of oxamyl in plants, without prior cleanup of the samples. The method allowed detection of 0.058 pg oxamyl and 0.035 p.g oxime. On treated peach leaves oxamyl was found to dissipate rapidly during the first two-week period, followed by a period of slow decomposition. Movement of oxamyl or its oxime did not occur in detectable quantities to untreated leaves or to the root or soil. A second variation of the method which employed a size exclusion column as·the first column and a reverse phase column as the second was used to monitor the degradation of oxamyl in treated, planted corn seeds and was suitable for simultaneous analysis of oxamyl, its oxime and dimethylcyanoformamide (DMCF), a metabolite of oxamyl. The method allowed detection of 0.02 pg oxamyl, 0.02 p.g oxime and 0.005 pg DMCF. Oxamyl was found to persist for a period of 5 - 6 weeks, which is long enough to permit oxamyl seedtreatment to be considered as a potential means of protecting young corn plants from nematode attack. Decomposition was found to be more rapid in unsterilized soil than in sterililized soil. DMCF was found to have a nematostatic effect at high concentrations ( 2,OOOpprn), but at lower concentrations no effect on nematode mobility was observed. Oxamyl, on the other hand, was found to reduce the mobility of nematodes at concentrations down to 4 ppm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In Honduras, research capacity strengthening (RCS) has not received sufficient attention, but an increase in research competencies would enable local scientists to advance knowledge and contribute to national priorities, including the Millennium Development Goals (MDGs). Objective: This project aimed at strengthening research capacity in infectious diseases in Honduras, focusing on the School of Microbiology of the National Autonomous University of Honduras (UNAH). The primary objective was the creation of a research-based graduate program for the continued training of researchers. Parallel objectives included institutional strengthening and the facilitation of partnerships and networks. Methods: Based on a multi-stakeholder consultation, an RCS workplan was designed and undertaken from 2007 to 2012. Due to unexpected adverse circumstances, the first 2 years were heavily dedicated to implementing the project's flagship, an MSc program in infectious and zoonotic diseases (MEIZ). In addition, infrastructure improvements and demand-driven continuing education opportunities were facilitated; biosafety and research ethics knowledge and practices were enhanced, and networks fostering collaborative work were created or expanded. Results: The project coincided with the peak of UNAH's radical administrative reform and an unprecedented constitutional crisis. Challenges notwithstanding, in September 2009, MEIZ admitted the first cohort of students, all of whom undertook MDG-related projects graduating successfully by 2012. Importantly, MEIZ has been helpful in expanding the School of Microbiology's traditional etiology-based, disciplinary model to infectious disease teaching and research. By fulfilling its objectives, the project contributed to a stronger research culture upholding safety and ethical values at the university. Conclusions: The resources and strategic vision afforded by the project enhanced UNAH's overall research capacity and its potential contribution to the MDGs. Furthermore, increased research activity and the ensuing improvement in performance indicators at the prime Honduran research institution invoke the need for a national research system in Honduras.