2 resultados para nearly-stoichiometric LiTaO3

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the synthesis, structural studies, and stoichiometric and catalytic reactivity of novel Mo(IV) imido silylamide (R'N)Mo(R2)(173_RIN-SiR32-H)(PMe3)n (1: Rl = tBu, Ar', Ar; R2 = Cl; R32 = Me2, MePh, MeCl, Ph2, HPh; n = 2; 2: R' = Ar, R2 = SiH2Ph, n = 1) and hydride complexes (ArN)Mo(H)(R)(PMe3)3 (R = Cl (3), SiH2Ph (4». Compounds of type 1 were generated from (R'N)Mo(PMe3)n(L) (5: R' = tBu, Ar', Ar; L = PMe3, r/- C2H4) and chlorohydrosilanes by the imido/silane coupling approach, recently discovered in our group. The mechanism of the reaction of 5 with HSiCh to give (ArN)MoClz(PMe3)3 (8) was studied by VT NMR, which revealed the intermediacy of (ArN)MCh(172 -ArN=SiHCl)(PMe3)z (9). The imido/silyl coupling methodology was transferred to the reactions of 5 with chlorine-free hydrosilanes. This approach allowed for the isolation of a novel ,B-agostic compound (ArN)Mo(SiHzPh)(173 -NAr-SiHPhH)(PMe3) (10). The latter was found to be active in a variety of hydrosilation processes, including the rare monoaddition of PhSiH3 to benzonitrile. Stoichiometric reactions of 11 with unsaturated compounds appear to proceed via the silanimine intermediate (ArN)M(17z-ArN=SiHPh)(PMe3) (12) and, in the case of olefins and nitriles, give products of Si-C coupling, such as (ArN)Mo(R)(173 -NAr-SiHPh-CH=CHR')(PMe3) (13: R = Et, R' = H; 14: R = H, R' = Ph) and (ArN)Mo(172-NAr-SiHPh-CHR=N)(PMe3) (15). Compound 13 was also subjected to catalysis showing much improved activity in the hydrosilation of carbonyls and alkenes. Hydride complexes 3 and 4 were prepared starting from (ArN)MoCh(PMe3)3 (8). Both hydride species catalyze a diversity of hydrosilation processes that proceed via initial substrate activation but not silane addition. The proposed mechanism is supported by stoichiometric reactions of 3 and 4, kinetic NMR studies, and DFf calculations for the hydrosilation of benzaldehyde and acetone mediated by 4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The syntheses, catalytic reactivity and mechanistic investigations of novel Mo(IV) and Mo(VI) imido systems is presented. Attempts at preparing mixed bis(imido) Mo(IV) complexes of the type (RN)(R′N)Mo(PMe3)n (n = 2 or 3) derived from the mono(imido) complexes (RN)Mo(PMe3)3(X)2 (R = tBu (1) or Ar (2); X = Cl2 or HCl, Ar=2,6-iPr2C6H3) are also described. The addition of lithiated silylamides to 1 or 2 results in the unexpected formation of the C-H activated cyclometallated complexes (RN)Mo(PMe3)2(η2-CH2PMe2)(X) (R = Ar, X = H (3); R = tBu, X = Cl (4)). Complexes 3 and 4 were used in the activation of R′E-H bonds (E = Si, B, C, O, P; R′ = alkyl or aryl), which typically give products of addition across the M-C bond of the type (RN)Mo(PMe3)3(ER′)(X) (4). In the case of 2,6-dimethylphenol, subsequent heating of 4 (R = Ar, R′ = 2,6-Me2C6H3, E = O) to 50 °C results in C-H activation to give the cyclometallated complex (ArN)Mo(PMe3)3(κ2-O,C-OPh(Me)CH2) (5). An alternative approach was developed in synthesizing the mixed imido complex (ArN)(tBuN)Mo(PMe3)(η2-C2H4) (6) through EtMgBr reduction of (ArN)(tBuN)MoCl2(DME) in the presence of PMe3. Complex 6 reacts with various hydro- and chlorosilanes to give β-agostic silylamido complexes and in one case, when Me2SiHCl is the silane, leads to the silanimine complex (tBuN)Mo(η2-SiMe2-NAr)(Et)(η2-C2H4) (7). Mechanistic studies on the formation of the Mo(VI) tris(silyl) complex (tBuN)Mo(SiHPh)(H){(μ-NtBu)(SiHPh)}(PMe3)2 (8) were done from the addition of three equivalents of PhSiH3 to (tBuN)Mo(PMe3)(η2-C2H4), resulting in identification of β- and γ-agostic SiH…Mo intermediates. The reactivity of complex 8 towards ethylene and nitriles was studied. In both cases coupling of unsaturated substrates with the Mo-Si bond of the metalacycle was observed. In the case of nitriles, insertion into the 4-membered disilaazamolybdacycle results in complexes of the type (tBuN)Mo{(κ2-Si,C-SiHPh-NtBu-SiHPh-N=C(R)}(PMe3)2. Catalytic hydrosilylation of carbonyls mediated by the β-agostic silylamido complex (ArN)2Mo(η3-NtBu-SiMe2-H)(H) (9) was investigated. Stoichiometric reactions with organic substrates showed that catalysis with 9 does not proceed via the conventional insertion of substrate into the Mo-H bond.