8 resultados para n-3 LC-PUFA biosynthesis enzymes

em Brock University, Canada


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The plant family Apocynaceae accumulates thousands of monoterpene indole alkaloids (MIAs) which originate, biosynthetically, from the common secoiridoid intermediate, strictosidine, that is formed from the condensation of tryptophan and secologanin molecules. MIAs demonstrate remarkable structural diversity and have pharmaceutically valuable biological activities. For example; a subunit of the potent anti-neoplastic molecules vincristine and vinblastine is the aspidosperma alkaloid, vindoline. Vindoline accumulates to trace levels under natural conditions. Research programs have determined that there is significant developmental and light regulation involved in the biosynthesis of this MIA. Furthermore, the biosynthetic pathway leading to vindoline is split among at least five independent cell types. Little is known of how intermediates are shuttled between these cell types. The late stage events in vindoline biosynthesis involve six enzymatic steps from tabersonine. The fourth biochemical step, in this pathway, is an indole N-methylation performed by a recently identified N-methyltransfearse (NMT). For almost twenty years the gene encoding this NMT had eluded discovery; however, in 2010 Liscombe et al. reported the identification of a γ-tocopherol C-methyltransferase homologue capable of indole N-methylating 2,3-dihydrotabersonine and Virus Induced Gene Silencing (VIGS) suppression of the messenger has since proven its involvement in vindoline biosynthesis. Recent large scale sequencing initiatives, performed on non-model medicinal plant transcriptomes, has permitted identification of candidate genes, presumably involved, in MIA biosynthesis never seen before in plant specialized metabolism research. Probing the transcriptome assemblies of Catharanthus roseus (L.)G.Don, Vinca minor L., Rauwolfia serpentine (L.)Benth ex Kurz, Tabernaemontana elegans, and Amsonia hubrichtii, with the nucleotide sequence of the N-methyltransferase involved in vindoline biosynthesis, revealed eight new homologous methyltransferases. This thesis describes the identification, molecular cloning, recombinant expression and biochemical characterization of two picrinine NMTs, one from V. minor and one from R. serpentina, a perivine NMT from C. roseus, and an ajmaline NMT from R. serpentina. While these TLMTs were expressed and functional in planta, they were active at relatively low levels and their N-methylated alkaloid products were not apparent our from alkaloid isolates of the plants. It appears that, for the most part, these TLMTs, participate in apparently silent biochemical pathways, awaiting the appropriate developmental and environmental cues for activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanistic aspects of the 19-hydroxy1ation and aromatization of androgens were investigated. Fungal, bacterial and mammalian enzymatic activities were studied in this regard . The fungus Pell i cular~ fi1amentosa metabolized androst-4-ene-3 , 17-dione to the corresponding 110<' , 11 f and 14 0( hydroxylated derivatives. No ~19- hydroxylated products were isolated, although this transformation was previously observed for the C21-steroids . The intestinal bacterium Clostridi um paraputrific~ had been reported to aromatize androsten-4-ene-3,17-dione. In the present study, however, only the ring A reduced products , 17(3 - hydroxy-5f -andro8tane- 3-one and 5f-androstane-3,17-dione , were recovered . Human placental microsomes contain substantial aromatase activity and were employed in an effort to elucidate some of the mechanistic details of aromatization. Selectively deuterated steroidal substrates were employed as a probe in order to distinguish b'!tween certain of the mechanisms proposed for aromatization . Retention of deuterium at C4 and C6 was observed. It was concluded that no free intermediates allowing for loss of hydrogen from either of these two positions are implicated in this process . The involvement of a Schiff base enzyme-sup strate complex in aromatization was examined using the substrate 17f - hydroxyandrost-4-ene-3-one- 3_ 1BO. Since no loss of label was ob~erved, the implication of a Schiff base was discounted . Mixed label1ir~ studies were performed in order to determine if hydroxylation at C19 is a rate-determining process in aromatization . Isotope effects of 2 .1 and 1.7 were determined for the conversion of 17f - hydroxyandrost-4-ene-J-one-19,19,19-dJ and -19-dl respectively to estrogens. It was concluded from this that 19-hydroxylation is at l east a partially rate-determinjng process in aromatization. A homoenb~ation mechanism for 19-hydroxylation was not supported by the data obtained in this s tudy. In vitro 1JC NMR monitoring using l7f-hydroxyandrost-4-ene-Jone- 19-l3C was found not to be a successful approach in the study of steroid transformations, owing in part t o their low solubility in the incubation medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research was carried out to obtain a convenient route for the synthesis of [7_ 14C]-p-hydroxy benzaldehyde. Section 1 of the thesis includes a route involving intermediates with protecting groups like benzyl and methyl ethers of the phenols. The benzyl ethers afforded the product in relatively better yield. The overall synthesis involves four steps. Section 2 describes the reactions carried out directly on phenols, and a three step pathway is obtained for the synthesis of p-hydroxy benzaldehyde, which was repeated on labelled compounds to obtain [7_14C]p- hydroxy benzaldehyde. The synthesis involves the reaction of p-bromophenol with Cu14CN to yield [7_ 14C]-p-cyano phenol, which is then reduced to the aldehyde by means of a simple and clean photolysis method. The same route was tried out to get 3,4-dihydroxybenzaldehyde and was found to work equally well for the synthesis of this compound. Section 3 deals with the isolation of labelled alkaloids, corydaline, protopine and reticu1ine from [2-3H,1-14C]-dopamine (3H/ 14C ratio = 4) fed Corydalis solida. 3H/14C ratios in the labelled alkaloids were determined. The uncorrected values showed almost 50% loss of 3H relative to 14C in reticuline, and roughly 75% loss of the 3H relative to 14C in corydaline and protopine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine adenovirus type 3 (BAV3) is a medium size DNA virus that causes respiratory and gastrointestinal disorders in cattle. The viral genome consists of a 35,000 base pair, linear, double-stranded DNA molecule with inverted terminal repeats and a 55 kilodalton protein covalently linked to each of the 5' ends. In this study, the viral genome was cloned in the form of subgenomic restriction fragments. Five EcoRI internal fragments spanning 3.4 to 89.0 % and two Xb a I internal fragments spanning 35.7 to 82.9 % of the viral genome were cloned into the EcoRI and Xbal sites of the bacterial vector pUC19. To generate overlap between cloned fragments, ten Hi n dIll internal fragments spanning 3.9 to 84.9 and 85.5 to 96% and two BAV3 BamHI internal fragments spanning 59.8 to 84.9% of the viral genome were cloned into the HindllI and BamHI sites of pUC19. The HindlII cloning strategy also resulted in six recombinant plasmids carrying two or more Hi ndII I fragments. These fragments provided valuable information on the linear orientation of the cloned fragments within the viral genome. Cloning of the terminal fragments required the removal of the residual peptides that remain attached to the 5' ends of the genome. This was accomplished by alkaline hydrolysis of the DNA-peptide bond. BamH I restriction fragments of the peptide-free DNA were cloned into pUC19 and resulted in two plasmids carrying the BAV3 Bam HI terminal fragments spanning 0 to 53.9% and 84.9 to 100% of the viral genome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two groups of rainbow trout were acclimated to 20 , 100 , and 18 o C. Plasma sodium, potassium, and chloride levels were determined for both. One group was employed in the estimation of branchial and renal (Na+-K+)-stimulated, (HC0 3-)-stimulated, and CMg++)-dependent ATPase activities, while the other was used in the measurement of carbonic anhydrase activity in the blood, gill and kidney. Assays were conducted using two incubation temperature schemes. One provided for incubation of all preparations at a common temperature of 2S oC, a value equivalent to the upper incipient lethal level for this species. In the other procedure the preparations were incubated at the appropriate acclimation temperature of the sampled fish. Trout were able to maintain plasma sodium and chloride levels essentially constant over the temperature range employed. The different incubation temperature protocols produced different levels of activity, and, in some cases, contrary trends with respect to acclimation temperature. This information was discussed in relation to previous work on gill and kidney. The standing-gradient flow hypothesis was discussed with reference to the structure of the chloride cell, known thermallyinduced changes in ion uptake, and the enzyme activities obtained in this study. Modifications of the model of gill lon uptake suggested by Maetz (1971) were proposed; high and low temperature models resulting. In short, ion transport at the gill at low temperatures appears to involve sodium and chloride 2 uptake by heteroionic exchange mechanisms working in association w.lth ca.rbonlc anhydrase. G.l ll ( Na + -K + ) -ATPase and erythrocyte carbonic anhydrase seem to provide the supplemental uptake required at higher temperatures. It appears that the kidney is prominent in ion transport at low temperatures while the gill is more important at high temperatures. 3 Linear regression analyses involving weight, plasma ion levels, and enzyme activities indicated several trends, the most significant being the interrelationship observed between plasma sodium and chloride. This, and other data obtained in the study was considered in light of the theory that a link exists between plasma sodium and chloride regulatory mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agaricus bisporus is the most commonly cultivated mushroom in North America and has a great economic value. Green mould is a serious disease of A. bisporus and causes major reductions in mushroom crop production. The causative agent of green mould disease in North America was identified as Trichoderma aggressivum f. aggressivum. Variations in the disease resistance have been shown in the different commercial mushroom strains. The purpose of this study is to continue investigations of the interactions between T. aggressivum and A. bisporus during the development of green mould disease. The main focus of the research was to study the roles of cell wall degrading enzymes in green mould disease resistance and pathogenesis. First, we tried to isolate and sequence the N-acetylglucosaminidase from A. bisporus to understand the defensive mechanism of mushroom against the disease. However, the lack of genomic and proteomic information of A. bisporus limited our efforts. Next, T. aggressivum cell wall degrading enzymes that are thought to attack Agaricus and mediate the disease development were examined. The three cell wall degrading enzymes genes, encoding endochitinase (ech42), glucanase (fJ-1,3 glucanase) and protease (prb 1), were isolated and sequenced from T. aggressivum f. aggressivum. The sequence data showed significant homology with the corresponding genes from other fungi including Trichoderma species. The transcription levels of the three T. aggressivum cell wall degrading enzymes were studied during the in vitro co-cultivation with A. bisporus using R T -qPCR. The transcription levels of the three genes were significantly upregulated compared to the solitary culture levels but were upregulated to a lesser extent in co-cultivation with a resistant strain of A. bisporus than with a sensitive strain. An Agrobacterium tumefaciens transformation system was developed for T. aggressivum and was used to transform three silencing plasmids to construct three new T. aggressivum phenotypes, each with a silenced cell wall degrading enzyme. The silencing efficiency was determined by RT-qPCR during the individual in vitro cocultivation of each of the new phenotypes with A. bisporus. The results showed that the expression of the three enzymes was significantly decreased during the in vitro cocultivation when compared with the wild type. The phenotypes were co-cultivated with A. bisporus on compost with monitoring the green mould disease progression. The data indicated that prbi and ech42 genes is more important in disease progression than the p- 1,3 glucanase gene. Finally, the present study emphasises the role of the three cell wall degrading enzymes in green mould disease infection and may provide a promising tool for disease management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In animals, both stress resistance and longevity appear to be influenced by the insulin/insulin-like growth factor-l signaling (lIS) pathway, the basic organization of which is highly conserved from invertebrates to vertebrates. Reduced lIS or genetic disruption of the lIS pathway leads to the activation of forkhead box transcription factors, which is thought to upregulate the expression of genes involved in enhancing stress resistance, including perhaps key antioxidant enzymes as well as DNA repair enzymes. Enhanced antioxidant and DNA repair capacities may underlie the enhanced cellular stress resistance observed in long-lived animals, however little data is available that directly supports this idea. I used three. experimental approaches to test the association of intracellular antioxidant and DNA base excision repair (BER) capacities with stress resistance and longevity: (1) a comparison of multiple vertebrate endotherm species of varying body masses and longevities; (2) a comparison of long-lived Snell dwarf mice and their normallittermates; and (3) a comparison of hypometabolic animals undergoing hibernation or estivation with their active counterparts. The activities of the five major intracellular antioxidant enzymes as well as the two rate-limiting enzymes in the BER pathway, apurininc/apyrimidinic (AP) endonuclease and polymerase ~, were measured. These measurements were performed in one or more of the following: (1) cultured dermal fibroblasts; (2) brain tissue; (3) heart tissue; (4) liver tissue. My results indicate that antioxidant enzymes are not universally upregulated in association with enhanced stress resistance and longevity. I also did not find that BER enzyme activity was positively correlated with longevity, in an inter-species context, though there was evidence for enhanced BER in long-lived Snell dwarf mice. Thus, while there were instances in which enhanced antioxidant and BER enzyme activities were associated with increased stress resistance and/or longevity, this was not universally the case, indicating that other mechanisms must be involved. These results suggest the need to re-examine existing 'oxidative stress' hypotheses of longevity and probe further into the molecular physiology of longevity to discover its mechanistic basis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Madagascar periwinkle [Catharanthus roseus (L.) G. Don] is a commercially important horticultural flower species and is the only source for several pharmaceutically valuable monoterpenoid indole alkaloids (MIAs), including the powerful antihypertensive ajmalicine and the antineoplastic agents vincristine and vinblastine. While biosynthesis of MIA precursors has been elucidated, conversion of the common MIA precursor strictosidine to MIAs of different families, for example ajmalicine, catharanthine or vindoline, remains uncharacterized. Deglycosylation of strictosidine by the key enzyme Strictosidine beta-glucosidase (SGD) leads to a pool of uncharacterized reaction products that are diverted into the different MIA families, but the downstream reactions are uncharacterized. Screening of 3600 EMS (ethyl methane sulfonate) mutagenized C. roseus plants to identify mutants with altered MIA profiles yielded one plant with high ajmalicine, and low catharanthine and vindoline content. RNA sequencing and comparative bioinformatics of mutant and wildtype plants showed up-regulation of SGD and the transcriptional repressor Zinc finger Catharanthus transcription factor (ZCT1) in the mutant line. The increased SGD activity in mutants seems to yield a larger pool of uncharacterized SGD reaction products that are channeled away from catharanthine and vindoline towards biosynthesis of ajmalicine when compared to the wildtype. Further bioinformatic analyses, and crossings between mutant and wildtype suggest a transcription factor upstream of SGD and ZCT1 to be mutated, leading to up-regulation of Sgd and Zct1. The crossing experiments further show that biosynthesis of the different MIA families is differentially regulated and highly complex. Three new transcription factors were identified by bioinformatics that seem to be involved in the regulation of Zct1 and Sgd expression, leading to the high ajmalicine phenotype. Increased cathenamine reductase activity in the mutant converts the pool of SGD reaction products into ajmalicine and its stereoisomer tetrahydroalstonine. The stereochemistry of ajmalicine and tetrahydroalstonine biosynthesis in vivo and in vitro was further characterized. In addition, a new clade of perakine reductase-like enzymes was identified that reduces the SGD reaction product vallesiachotamine in a stereo-specific manner, characterizing one of the many reactions immediately downstream of SGD that determine the different MIA families. This study establishes that RNA sequencing and comparative bioinformatics, in combination with molecular and biochemical characterization, are valuable tools to determine the genetic basis for mutations that trigger phenotypes, and this approach can also be used for identification of new enzymes and transcription factors.