9 resultados para modulation bandwidth

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

DF2, a heptapeptide, is a member of the family of FMRFamide-like peptides and has been shown to increase the amount of transmitter released at neuromuscular junctions of the crayfish, Procambarus clarkit Recent evidence has shown that protein kinase C (PKC), calcium/calmodulin-dependent protein kinase II (CaMKII) and the cAMPdependent protein kinase (PKA) play a role in the neuromodulatory pathway of DF2. The involvement of these kinases led to the prediction that a G-protein-coupled receptor (GPCR) is activated by DF2 due to the role that each kinase plays in traditional GPCR pathways seen in other organisms and in other cells. G-proteins can also act on an enzyme that generates cyclic guanosine monophosphate (cGMP) which mediates its effects through a cGMP-dependent protein kinase (PKG). This thesis addresses the question of whether or not DF2's effects on synaptic transmission in crayfish are mediated by the cyclic nucleotides cAMP and cGMP. The effects of DF2 on synaptic transmission were examined using deep abdominal extensor muscles of the crayfish Procambarus clarkii. An identified motor neuron was stimulated, and excitatory post-synaptic potentials (EPSPs) were recorded in abdominal extensor muscle LI . A number of activators and inhibitors were used to determine whether or not cAMP, PKA, cGMP and PKG mediate the effect of this peptide. Chemicals that are known to activate PKA (Sp-cAMPS) and/or PKG (8-pCPTcGMP) mimic and potentiate DF2's effect by increasing EPSP amplitude. Inhibitors of either PKA (Rp-cAMPS) or PKG (Rp-8-pCPT-cGMPS) block a portion of the increase in EPSP amplitude induced by the peptide. When both kinase inhibitors are applied simultaneously, the entire effect of DF2 on EPSPs is blocked. The PKG inhibitor blocks the effects of a PKG activator but does not alter the effect of a PKA activator on EPSP amplitude. Thus, the PKG inhibitor appears to be relatively specific for PKG. A trend in the data suggests that the PKA inhibitor blocks a portion of the response elicited by the PKG activator. Thus, the PKA inhibitor may be less specific for PKA. Phosphodiesterase inhibitors, which are known to inhibit the breakdown of cAMP (IBMX) and/or cGMP (mdBAMQ), potentiate the effect of the peptide. These results support the hypothesis that cAMP and cGMP, acting through their respective protein kinase enzymes, mediate the ability of DFi to increase transmitter output.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whereas the role of the anterior cingulate cortex (ACC) in cognitive control has received considerable attention, much less work has been done on the role of the ACC in autonomic regulation. Its connections through the vagus nerve to the sinoatrial node of the heart are thought to exert modulatory control over cardiovascular arousal. Therefore, ACC is not only responsible for the implementation of cognitive control, but also for the dynamic regulation of cardiovascular activity that characterizes healthy heart rate and adaptive behaviour. However, cognitive control and autonomic regulation are rarely examined together. Moreover, those studies that have examined the role of phasic vagal cardiac control in conjunction with cognitive performance have produced mixed results, finding relations for specific age groups and types of tasks but not consistently. So, while autonomic regulatory control appears to support effective cognitive performance under some conditions, it is not presently clear just what factors contribute to these relations. The goal of the present study was, therefore, to examine the relations between autonomic arousal, neural responsivity, and cognitive performance in the context of a task that required ACC support. Participants completed a primary inhibitory control task with a working memory load embedded. Pre-test cardiovascular measures were obtained, and ontask ERPs associated with response control (N2/P3) and error-related processes (ERN/Pe) were analyzed. Results indicated that response inhibition was unrelated to phasic vagal cardiac control, as indexed by respiratory sinus arrhythmia (RSA). However, higher resting RSA was associated with larger ERN ampUtude for the highest working memory load condition. This finding suggests that those individuals with greater autonomic regulatory control exhibited more robust ACC error-related responses on the most challenging task condition. On the other hand, exploratory analyses with rate pressure product (RPP), a measure of sympathetic arousal, indicated that higher pre-test RPP (i.e., more sympathetic influence) was associated with more errors on "catch" NoGo trials, i.e., NoGo trials that simultaneously followed other NoGo trials, and consequently, reqviired enhanced response control. Higher pre-test RPP was also associated with smaller amplitude ERNs for all three working memory loads and smaller ampUtude P3s for the low and medium working memory load conditions. Thus, higher pretest sympathetic arousal was associated with poorer performance on more demanding "catch" NoGo trials and less robust ACC-related electrocortical responses. The findings firom the present study highlight tiie interdependence of electrocortical and cardiovascular processes. While higher pre-test parasympathetic control seemed to relate to more robust ACC error-related responses, higher pre-test sympathetic arousal resulted in poorer inhibitory control performance and smaller ACC-generated electrocortical responses. Furthermore, these results provide a base from which to explore the relation between ACC and neuro/cardiac responses in older adults who may display greater variance due to the vulnerabihty of these systems to the normal aging process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalase is the enzyme which decomposes hydrogen peroxide to water and oxygen. Escherichia coli contains two catalases. Hydroperoxidase I (HPI) is a bifunctional catalase-peroxidase. Hydroperoxidase II (HPII) is only catalytically active toward H202. Expression of the genes encoding these proteins is controlled by different regimes. HPJI is thought to be a hexamer, having one heme d cis group per enzymatic subunit. HPII wild type protein and heme containing mutant proteins were obtained from the laboratory of P. Loewen (Univ. of Manitoba). Mutants constructed by oligonucleotidedirected mutagenesis were targeted for replacement of either the His128 residue or the Asn201 residue in the vicinity of the HPII heme crevice. His128 is the residue thought to be analogous to the His74 distal axial ligand of the heme in the bovine liver enzyme, and Asn201 is believed to be a residue critical to the function of the enzyme because of its role in orienting and interacting with the substrate molecule. Investigation of the nature of the hemes via absorption spectroscopy of the unmodified catalase proteins and their derived pyridine hemochromes showed that while the bovine and Saccharomyces cerevisiae catalase enzymes are protoheme-containing, the HPII wild type protein contains heme d, and the mutant proteins contain either solely protoheme, or heme d-protoheme mixtures. Cyanide binding studies supported this, as ligand binding was monophasic for the bovine, Saccharomyces cerevisiae, and wild type HPII enzymes, but biphasic for several of the HPII mutant proteins. Several mammalian catalases, and at least two prokaryotic catalases, are known to be NADPH binding. The function of this cofactor appears to be the prevention of inactivation of the enzyme, which occurs via formation of the inactive secondary catalase peroxide compound (compound II). No physiologically plausible scheme has yet been proposed for the NADPH mediation of catalase activity. This study has shown, via fluorescence and affinity chromatography techniques, that NADPH binds to the T (Typical) and A (Atypical) catalases of Saccharomyces cerevisiae, and that wild type HPII apparently does not bind NADPH. This study has also shown that NADPH is unlike any other hydrogen donor to catalase, and addresses its features as a unique donor by proposing a mechanism whereby NADPH is oxidized and catalase is protected from inactivation via the formation of protein radical species. Migration of this radical to a position close to the NADPH is also proposed as an adjunct hypothesis, based on similar electron migrations that are known to occur within metmyoglobin and cytochrome c peroxidase when reacted with H202. Validation of these hypotheses may be obtained in appropriate future experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frequency dependence of the electron-spin fluctuation spectrum, P(Q), is calculated in the finite bandwidth model. We find that for Pd, which has a nearly full d-band, the magnitude, the range, and the peak frequency of P(Q) are greatly reduced from those in the standard spin fluctuation theory. The electron self-energy due to spin fluctuations is calculated within the finite bandwidth model. Vertex corrections are examined, and we find that Migdal's theorem is valid for spin fluctuations in the nearly full band. The conductance of a normal metal-insulator-normal metal tunnel junction is examined when spin fluctuations are present in one electrode. We find that for the nearly full band, the momentum independent self-energy due to spin fluctuations enters the expression for the tunneling conductance with approximately the same weight as the self-energy due to phonons. The effect of spin fluctuations on the tunneling conductance is slight within the finite bandwidth model for Pd. The effect of spin fluctuations on the tunneling conductance of a metal with a less full d-band than Pd may be more pronounced. However, in this case the tunneling conductance is not simply proportional to the self-energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A FMRFamide-like neuropeptide with the sequence "DRNFLRF-NH2" was recently isolated from pericardial organs of crayfish (Mercier et aI., Peptides, 14, 137-143, 1993). This neuropeptide, referred to as "DF2'" has already been shown to elicit cardioexcitation and to enhance synaptic transmission at neuromuscular junctions. Possible effects ofDF2 on muscle were investigated using superficial extensor muscles of the abdomen of the crayfish, Procambarus clar/ai. These muscles are of the tonic type and generate slow contractions that affect posture. DF2, at concentrations of 10-8 M or higher, increased muscle tonus and induced spontaneous, rhythmic contractions. These effects were antagonized by 5 rnM Mn2+ but not by lO-7M tetrodotoxin (TTX). Thus, they represent direct actions on muscle cells (rather than effects on motor neurons) and are likely to involve calcium influx. In contrast, deep abdominal extensor muscles, responsible for rapid swimming movements, and superficial flexor muscles do not generate contractions in response to the peptide. 2 Spontaneous contractions were also induced in the superficial extensor muscles by decreasing the temperature to II-13°C. Such contractions were also TTX-insensitive and they were antagonized by adding calcium channel blockers (Mn2+, Cd2+ or Ni2+) or by removing calcium from the bathing solution. This suggests that the spontaneous contractions depend on an influx of calcium from the extracellular solution. N-type and L-type voltage dependent calcium channel blockers did not reduce the effect of the peptide or the spontaneous contractions suggesting that calcium influx is not through N- or L-type calcium channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Please consult the paper edition of this thesis to read. It is available on the 5th Floor of the Library at Call Number: Z 9999 B56 M68 2007

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropeptides can modulate physiological properties of neurons in a cell-specific manner. The present work examines whether a neuropeptide can also modulate muscle tissue in a cell-specific manner, using identified muscle cells in third instar larvae of fruit flies. DPKQDFMRFa, a modulatory peptide in the fruit fly Drosophila melanogaster, has been shown to enhance transmitter release from motor neurons and to elicit contractions by a direct effect on muscle cells. We report that DPKQDFMRFa causes a nifedipine-sensitive drop in input resistance in some muscle cells (6 and 7) but not others (12 and 13). The peptide also increased the amplitude of nerve-evoked contractions and compound excitatory junctional potentials (EJPs) to a greater degree in muscle cells 6 and 7 than 12 and 13. Knocking down FMRFa receptor (FR) expression separately in nerve and muscle indicate that both presynaptic and postsynaptic FR expression contributed to the enhanced contractions, but EJP enhancement was due mainly to presynaptic expression. Muscle-ablation showed that DPKQDFMRFa induced contractions and enhanced nerve-evoked contractions more strongly in muscle cells 6 and 7 than cells 12 and 13. In situ hybridization indicated that FR expression was significantly greater in muscle cells 6 and 7 than 12 and 13. Taken together, these results indicate that DPKQDFMRFa can elicit cell-selective effects on muscle fibres. The ability of neuropeptides to work in a cell-selective manner on neurons and muscle cells may help explain why so many peptides are encoded in invertebrate and vertebrate genomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capacity for all living cells to sense and interact with their environment is a necessity for life. In highly evolved, eukaryotic species, like humans, signalling mechanisms are necessary to regulate the function and survival of all cells in the organism. Synchronizing systemic signalling systems at the cellular, organ and whole-organism level is a formidable task, and for most species requires a large number of signalling molecules and their receptors. One of the major types of signalling molecules used throughout the animal kingdom are modulatory substances (e.x. hormones and peptides). Modulators can act as chemical transmitters, facilitating communication at chemical synapses. There are hundreds of circulating modulators within the mammalian system, but the reason for so many remains a mystery. Recent work with the fruit fly, Drosophila melanogaster demonstrated the capacity for peptides to modulate synaptic transmission in a neuron-specific manner, suggesting that peptides are not simply redundant, but rather may have highly specific roles. Thus, the diversity of peptides may reflect cell-specific functions. The main objective of my doctoral thesis was to examine the extent to which neuromodulator substances and their receptors modulate synaptic transmission at a cell-specific level using D. melanogaster. Using three different modulatory substances, i) octopamine - a biogenic amine released from motor neuron terminals, ii) DPKQDFMRFa - a neuropeptide secreted into circulation, and iii) Proctolin - a pentapeptide released both from motor neuron terminals and into circulation, I was able to investigate not only the capacity of these various substances to work in a cell-selective manner, but also examine the different mechanisms of action and how modulatory substances work in concert to execute systemic functionality . The results support the idea that modulatory substances act in a circuit-selective manner in the central nervous system and in the periphery in order to coordinate and synchronize physiologically and behaviourally relevant outputs. The findings contribute as to why the nervous system encodes so many modulatory substances.