3 resultados para mismatched uncertainties

em Brock University, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Confocal and two-photon microcopy have become essential tools in biological research and today many investigations are not possible without their help. The valuable advantage that these two techniques offer is the ability of optical sectioning. Optical sectioning makes it possible to obtain 3D visuahzation of the structiu-es, and hence, valuable information of the structural relationships, the geometrical, and the morphological aspects of the specimen. The achievable lateral and axial resolutions by confocal and two-photon microscopy, similar to other optical imaging systems, are both defined by the diffraction theorem. Any aberration and imperfection present during the imaging results in broadening of the calculated theoretical resolution, blurring, geometrical distortions in the acquired images that interfere with the analysis of the structures, and lower the collected fluorescence from the specimen. The aberrations may have different causes and they can be classified by their sources such as specimen-induced aberrations, optics-induced aberrations, illumination aberrations, and misalignment aberrations. This thesis presents an investigation and study of image enhancement. The goal of this thesis was approached in two different directions. Initially, we investigated the sources of the imperfections. We propose methods to eliminate or minimize aberrations introduced during the image acquisition by optimizing the acquisition conditions. The impact on the resolution as a result of using a coverslip the thickness of which is mismatched with the one that the objective lens is designed for was shown and a novel technique was introduced in order to define the proper value on the correction collar of the lens. The amoimt of spherical aberration with regard to t he numerical aperture of the objective lens was investigated and it was shown that, based on the purpose of our imaging tasks, different numerical apertures must be used. The deformed beam cross section of the single-photon excitation source was corrected and the enhancement of the resolution and image quaUty was shown. Furthermore, the dependency of the scattered light on the excitation wavelength was shown empirically. In the second part, we continued the study of the image enhancement process by deconvolution techniques. Although deconvolution algorithms are used widely to improve the quality of the images, how well a deconvolution algorithm responds highly depends on the point spread function (PSF) of the imaging system applied to the algorithm and the level of its accuracy. We investigated approaches that can be done in order to obtain more precise PSF. Novel methods to improve the pattern of the PSF and reduce the noise are proposed. Furthermore, multiple soiu'ces to extract the PSFs of the imaging system are introduced and the empirical deconvolution results by using each of these PSFs are compared together. The results confirm that a greater improvement attained by applying the in situ PSF during the deconvolution process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Open Access Scheduling has shown great promise in allowing health care practices to provide same-day access, and to match patients with their regular physicians. However, similarly to traditional clinics where appointments are pre-booked, open access clinics are also frustrated with long waits, long idle time and long overtime due to uncertainties such as patient no-shows, variable service time and variable daily demand. These aspects have not been studied previously in an open access setting. This study investigates different management options to improve clinical performance in terms of patient waiting time, doctor idle time and clinic overtime. Other factors studied with a simulation model include client load and placement of pre-booked slots. Results show that a proper panel size is critical to obtain good performance for open access clinics, and that good choices for management options depend on the client load.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infrared thermography is a non-invasive technique that measures mid to long-wave infrared radiation emanating from all objects and converts this to temperature. As an imaging technique, the value of modern infrared thermography is its ability to produce a digitized image or high speed video rendering a thermal map of the scene in false colour. Since temperature is an important environmental parameter influencing animal physiology and metabolic heat production an energetically expensive process, measuring temperature and energy exchange in animals is critical to understanding physiology, especially under field conditions. As a non-contact approach, infrared thermography provides a non-invasive complement to physiological data gathering. One caveat, however, is that only surface temperatures are measured, which guides much research to those thermal events occurring at the skin and insulating regions of the body. As an imaging technique, infrared thermal imaging is also subject to certain uncertainties that require physical modeling, which is typically done via built-in software approaches. Infrared thermal imaging has enabled different insights into the comparative physiology of phenomena ranging from thermogenesis, peripheral blood flow adjustments, evaporative cooling, and to respiratory physiology. In this review, I provide background and guidelines for the use of thermal imaging, primarily aimed at field physiologists and biologists interested in thermal biology. I also discuss some of the better known approaches and discoveries revealed from using thermal imaging with the objective of encouraging more quantitative assessment.