2 resultados para mimetic

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis applies x-ray diffraction to measure he membrane structure of lipopolysaccharides and to develop a better model of a LPS bacterial melilbrane that can be used for biophysical research on antibiotics that attack cell membranes. \iVe ha'e Inodified the Physics department x-ray machine for use 3.'3 a thin film diffractometer, and have lesigned a new temperature and relative humidity controlled sample cell.\Ve tested the sample eel: by measuring the one-dimensional electron density profiles of bilayers of pope with 0%, 1%, 1G :VcJ, and 100% by weight lipo-polysaccharide from Pse'udo'lTwna aeTuginosa. Background VVe now know that traditional p,ntibiotics ,I,re losing their effectiveness against ever-evolving bacteria. This is because traditional antibiotic: work against specific targets within the bacterial cell, and with genetic mutations over time, themtibiotic no longer works. One possible solution are antimicrobial peptides. These are short proteins that are part of the immune systems of many animals, and some of them attack bacteria directly at the membrane of the cell, causing the bacterium to rupture and die. Since the membranes of most bacteria share common structural features, and these featuret, are unlikely to evolve very much, these peptides should effectively kill many types of bacteria wi Lhout much evolved resistance. But why do these peptides kill bacterial cel: '3 , but not the cells of the host animal? For gramnegative bacteria, the most likely reason is that t Ileir outer membrane is made of lipopolysaccharides (LPS), which is very different from an animal :;ell membrane. Up to now, what we knovv about how these peptides work was likely done with r !10spholipid models of animal cell membranes, and not with the more complex lipopolysa,echaricies, If we want to make better pepticies, ones that we can use to fight all types of infection, we need a more accurate molecular picture of how they \vork. This will hopefully be one step forward to the ( esign of better treatments for bacterial infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fire blight is a disease caused by the phytopathogenic bacterium Erwinia amylovora, an economically important pathogen in the commercial production of apples and pears. Bacteriophages have been proposed as a commercial biopesticide to relieve the pressures on apple and pear production and provide alternatives to existing biological control options. This work reports on the investigation of host resistance in the development of a phage biopesticide. Exopolysaccharide (EPS) deficient bacterial mutants were generated through recombineering to investigate the role of EPS in bacteriophage adsorption and infection. The mutants that were deficient in amylovoran production were avirulent and resistant to infection by phages of the Podoviridae and some of the Siphoviridae family. Levan deficient bacterial mutants resulted in reduced phage titers in some phages from the Myoviridae family. Exopolysaccharide mimetic monosaccharides were used to demonstrate that levan and amylovoran play an important role in phage attack of E. amylovora.