3 resultados para microbial viability

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epoxides can be hydrolyzed by fungi to produce chiral diols. The first part of this thesis presents an investigation of the microbial hydrolysis of aziridines comparable in structure to epoxide biotransformation substrates. Biotransformation of the aziridines 1 -methyl-2-phenyl aziridine, 2- phenylaziridine and N-methyl-7-aza bicyclo[4.1.0] heptane was studied using Beauveria sulfurescens, Aspergillus niger and Diplodia gossypina but no evidence for enzymic hydrolysis was obtained. The hydroxylation reaction performed by the fungus Beauveria sulfurescens ATCC 7159 has been studied for many years and several models describing the hydroxylating pattern exhibited by this fungus have been proposed. The second part of this thesis presents a test of the proposed models. The ability of Beauveria sulfurescens to hydroxylate thirty potential substrates was examined, and the data suggest that none of the earlier proposed models accounts for all of the bioconversion results. A possible explanation is proposed, suggesting that there is more than one enzyme responsible for the hydroxylation reactions performed by Beauveria sulfurescens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inter and intrachromosomal viability interactions have been detected in a few experimental studies. Computer simulations and analytical models have led to postulation of nonadditivity of gene action. This study reports evidence of strong nonadditive interactions between the arms of the metacentric second chromosome of Drosophila melanogaster. Mean viability for 40 homozygous lines of the second chromosomes was 0.720+0.265 • Mean viability for 40 half homozygous second chromosomes was 0.928!O.)10 • Significant heterogeneity among and within lines was found in both groups of chromosomes, as well as a highly significant viability difference between the two groups. Comparison of observed viabilities with the expected values, according to the theories of additive and multi - plicative gene action. was made for both groups. Highly significant departures from the expected values were found for over 90% of the lines in both groups of chromosomes, for both additive and multiplicative models of gene action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbial ichnofossils in volcanic rocks provide a significant record of subsurface microbes and potentially extraterrestrial biosignatures. Here, the textures, mineralogy, and geochemistry of two continental basaltic hydrovolcanic deposits - Reed Rocks and Black Hills - in the Fort Rock Volcanic Field (FRVF) are investigated. Methods include petrographic microscopy, micro and powder X-ray diffraction, SEM/BSE/EDF imaging, energy dispersive spectroscopy, stable isotopes, and X-ray fluorescence. Petrographic analysis revealed granular and tubular textures with biogenic morphologies that include terminal enlargements, septate divisions, branching forms, spiral filaments, and ovoid bodies resembling endolithic microborings described in ocean basalts. They display evidence of behaviour and a geologic context expressing their relative age and syngenicity. Differences in abiotic alteration and the abundance/morphotype assemblage of putative microborings between the sites indicate that water/rock ratio, fluid composition and flux, temperature and secondary phase formation are influences on microboring formation. This study is the first report of reputed endolithic microborings in basalts erupted in a continental lacustrine setting.