3 resultados para microbial alteration

em Brock University, Canada


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microbial ichnofossils in volcanic rocks provide a significant record of subsurface microbes and potentially extraterrestrial biosignatures. Here, the textures, mineralogy, and geochemistry of two continental basaltic hydrovolcanic deposits - Reed Rocks and Black Hills - in the Fort Rock Volcanic Field (FRVF) are investigated. Methods include petrographic microscopy, micro and powder X-ray diffraction, SEM/BSE/EDF imaging, energy dispersive spectroscopy, stable isotopes, and X-ray fluorescence. Petrographic analysis revealed granular and tubular textures with biogenic morphologies that include terminal enlargements, septate divisions, branching forms, spiral filaments, and ovoid bodies resembling endolithic microborings described in ocean basalts. They display evidence of behaviour and a geologic context expressing their relative age and syngenicity. Differences in abiotic alteration and the abundance/morphotype assemblage of putative microborings between the sites indicate that water/rock ratio, fluid composition and flux, temperature and secondary phase formation are influences on microboring formation. This study is the first report of reputed endolithic microborings in basalts erupted in a continental lacustrine setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epoxides can be hydrolyzed by fungi to produce chiral diols. The first part of this thesis presents an investigation of the microbial hydrolysis of aziridines comparable in structure to epoxide biotransformation substrates. Biotransformation of the aziridines 1 -methyl-2-phenyl aziridine, 2- phenylaziridine and N-methyl-7-aza bicyclo[4.1.0] heptane was studied using Beauveria sulfurescens, Aspergillus niger and Diplodia gossypina but no evidence for enzymic hydrolysis was obtained. The hydroxylation reaction performed by the fungus Beauveria sulfurescens ATCC 7159 has been studied for many years and several models describing the hydroxylating pattern exhibited by this fungus have been proposed. The second part of this thesis presents a test of the proposed models. The ability of Beauveria sulfurescens to hydroxylate thirty potential substrates was examined, and the data suggest that none of the earlier proposed models accounts for all of the bioconversion results. A possible explanation is proposed, suggesting that there is more than one enzyme responsible for the hydroxylation reactions performed by Beauveria sulfurescens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of the Sar Cheshmeh porphyry Cu-Mo deposit is related to the culmination of calc-alkaline igneous activity in the Kerman region. The deposit comprises a suite of Late Cenozoic intrusive sub-volcanic and extrusive rocks emplaced into a folded series of Eocene andesitic lavas and pyroclastic sediments. The earliest stage of magmatism was emplacement of a large granodiorite stock about 29 m.y.b.p. This was followed by intrusion of two separate porphyritic bodies at 15 (Sar Cheshrneh porphyry) and 12 m.y.b.p. (Late porphyry) and a series of sub-volcanic dikes between 12 and 9 m.y.b.p. Magmatic activity terminated with multi-phase extrusion of a Pelean dacitic dome complex between 10 and 2.8 m.y.b.p. The country rocks and the earlier porphyritic intrusions are pervasively altered to biotite-rich potassium silicate (metasomatic and hydrothermal) sericite-clay, phyllic and chlorite-clay, argillic assemblages. These grade outwards to an extensive propylitic zone. Within the ore body, the later intra-. and post-mineral dikes only reach the propylitic grade. At least three different sets of quartz veins are present, including a sericite-chlorite-quartz set which locally retrogrades pervasive secondary biotite to sericite. In the hypogene zone, metasomatic and hydrothermal alteration is related to all stages of magmatism but copper mineralization and veining are restricted to a period of 15 to 9 m.y.b.p.related to the early intrusive phases. The copper mineralization and silicate alteration do not fit a simple annular ring model but have been greatly modified by, 1. The existence of an ititial, outer ring, of metasomatic alteration overprinted by an inner.ring of hydrothermal alteration and, 2. later extensive dilating effects of intra- and post-mineral dikes. The hydrothermal clay mineral assemblage in the hypogene zone is illite-chlorite-kaolinite-smectite (beidellite). Preliminary studies indicate that the amount of each of these clays varies vertically and that hydrothermal zonation of clay minerals is possible. However, these minerals alter to illite-kaolinite assemblages in the supergene sulfide zone and to more kaolinite-rich assemblages in the supergene leached zone. Hydrothermal biotite breaks down readily in the supergene zone and is not well preserved in surface outcrops. The distribution of copper minerals in the supergene sulfide enrichment zone is only partly related to rock type being more dependent on topography and the availability of fractures.