5 resultados para methods: N-body simulations
em Brock University, Canada
Resumo:
We study the phonon dispersion, cohesive and thermal properties of raxe gas solids Ne, Ar, Kr, and Xe, using a variety of potentials obtained from different approaches; such as, fitting to crystal properties, purely ab initio calculations for molecules and dimers or ab initio calculations for solid crystalline phase, a combination of ab initio calculations and fitting to either gas phase data or sohd state properties. We explore whether potentials derived with a certain approaxih have any obvious benefit over the others in reproducing the solid state properties. In particular, we study phonon dispersion, isothermal ajid adiabatic bulk moduli, thermal expansion, and elastic (shear) constants as a function of temperatiue. Anharmonic effects on thermal expansion, specific heat, and bulk moduli have been studied using A^ perturbation theory in the high temperature limit using the neaxest-neighbor central force (nncf) model as developed by Shukla and MacDonald [4]. In our study, we find that potentials based on fitting to the crystal properties have some advantage, particularly for Kr and Xe, in terms of reproducing the thermodynamic properties over an extended range of temperatiures, but agreement with the phonon frequencies with the measured values is not guaranteed. For the lighter element Ne, the LJ potential which is based on fitting to the gas phase data produces best results for the thermodynamic properties; however, the Eggenberger potential for Ne, where the potential is based on combining ab initio quantum chemical calculations and molecular dynamics simulations, produces results that have better agreement with the measured dispersion, and elastic (shear) values. For At, the Morse-type potential, which is based on M0ller-Plesset perturbation theory to fourth order (MP4) ab initio calculations, yields the best results for the thermodynamic properties, elastic (shear) constants, and the phonon dispersion curves.
Resumo:
Euclidean distance matrix analysis (EDMA) methods are used to distinguish whether or not significant difference exists between conformational samples of antibody complementarity determining region (CDR) loops, isolated LI loop and LI in three-loop assembly (LI, L3 and H3) obtained from Monte Carlo simulation. After the significant difference is detected, the specific inter-Ca distance which contributes to the difference is identified using EDMA.The estimated and improved mean forms of the conformational samples of isolated LI loop and LI loop in three-loop assembly, CDR loops of antibody binding site, are described using EDMA and distance geometry (DGEOM). To the best of our knowledge, it is the first time the EDMA methods are used to analyze conformational samples of molecules obtained from Monte Carlo simulations. Therefore, validations of the EDMA methods using both positive control and negative control tests for the conformational samples of isolated LI loop and LI in three-loop assembly must be done. The EDMA-I bootstrap null hypothesis tests showed false positive results for the comparison of six samples of the isolated LI loop and true positive results for comparison of conformational samples of isolated LI loop and LI in three-loop assembly. The bootstrap confidence interval tests revealed true negative results for comparisons of six samples of the isolated LI loop, and false negative results for the conformational comparisons between isolated LI loop and LI in three-loop assembly. Different conformational sample sizes are further explored by combining the samples of isolated LI loop to increase the sample size, or by clustering the sample using self-organizing map (SOM) to narrow the conformational distribution of the samples being comparedmolecular conformations. However, there is no improvement made for both bootstrap null hypothesis and confidence interval tests. These results show that more work is required before EDMA methods can be used reliably as a method for comparison of samples obtained by Monte Carlo simulations.
Resumo:
This mixed methods investigation examined the nutritional knowledge and habits of adolescent girls in grades 9 through 12 at a secondary school in southern Ontario. Through questionnaires, interviews, and the use of teaching and curriculum documents, this study attempted to understand whether the current nutrition curriculum is influential in developing students' nutritional knowledge, healthy eating habits, and a favourable body image. Data collection occurred over a 2-month period, involving 90 female participants, and the data analysis program SPSS was used for analysis of the quantitative questionnaire data. Interview data were organized into categories, and analysis of any emerging themes occurred. Teaching and curriculum documents were examined to determine any overlap and develop an understanding of the participants' exposure and experience within nutrition within the classroom setting. The findings of this study suggest that the current nutrition education did have an impact on the participants' nutrition knowledge. However, the impact on their eating habits and body image was limited in the context it was measured and tested. The knowledge learned within the classroom may not always be applied outside of the classroom. This study suggests that improvement in the current nutrition curriculum may be needed to have a bigger impact on adolescent females. The findings from the study shine light on areas of improvements for educators as well as development of future curriculum. Changes may need to be made not only in the specific curriculum content and expectations but also the delivery of it by the classroom teacher.
Resumo:
Volume(density)-independent pair-potentials cannot describe metallic cohesion adequately as the presence of the free electron gas renders the total energy strongly dependent on the electron density. The embedded atom method (EAM) addresses this issue by replacing part of the total energy with an explicitly density-dependent term called the embedding function. Finnis and Sinclair proposed a model where the embedding function is taken to be proportional to the square root of the electron density. Models of this type are known as Finnis-Sinclair many body potentials. In this work we study a particular parametrization of the Finnis-Sinclair type potential, called the "Sutton-Chen" model, and a later version, called the "Quantum Sutton-Chen" model, to study the phonon spectra and the temperature variation thermodynamic properties of fcc metals. Both models give poor results for thermal expansion, which can be traced to rapid softening of transverse phonon frequencies with increasing lattice parameter. We identify the power law decay of the electron density with distance assumed by the model as the main cause of this behaviour and show that an exponentially decaying form of charge density improves the results significantly. Results for Sutton-Chen and our improved version of Sutton-Chen models are compared for four fcc metals: Cu, Ag, Au and Pt. The calculated properties are the phonon spectra, thermal expansion coefficient, isobaric heat capacity, adiabatic and isothermal bulk moduli, atomic root-mean-square displacement and Gr\"{u}neisen parameter. For the sake of comparison we have also considered two other models where the distance-dependence of the charge density is an exponential multiplied by polynomials. None of these models exhibits the instability against thermal expansion (premature melting) as shown by the Sutton-Chen model. We also present results obtained via pure pair potential models, in order to identify advantages and disadvantages of methods used to obtain the parameters of these potentials.
Resumo:
Objective To determine if there is an association between energy intake (EI) and overweight or obesity status (OWOB) in children with and without probable developmental coordination disorder (p-DCD). Methods 1905 children were included. The Bruininks-Oseretsky Test of Motor Proficiency was used to assess p-DCD, body mass index for OWOB, and the Harvard Food Frequency Questionnaire for EI. Comparative tests and logistic regressions were performed. Results Reported EI was similar between p-DCD and non-DCD children among boys (2291 vs. 2281 kcal/day, p=0.917), but much lower in p-DCD compared to non-DCD girls (1745 vs.. 2068 kcal/day, p=0.007). EI was negatively associated with OWOB in girls only (OR: 0.82 (0.68, 0.98)). Conclusions Girls with p-DCD have a lower reported EI compared to their non-DCD peers. EI is negatively associated with OWOB in girls with p-DCD. Future research is needed to assess longitudinally the potential impact of EI on OWOB in this population.