6 resultados para metapleural gland
em Brock University, Canada
Resumo:
The relationship between photoperiod, plasma concentration of ionic calcium and the histology of the prolactin-secreting cells of the rostral pars distalis of the pituitary gland, the Corpuscles of Stannius and the Ultimobranchial gland were investigated. Neither the plasma concentration of ionic calcium nor histologically apparent prolactin cell activity could be correlated with photoperiod. Some evidence of a photoperiodic effect on both the Corpuscles of Stannius and the Ultimobranchial gland was obtained. The expected reciprocal relationship between the activity of these glands was not obvious at the histological level . Quantitative and qualitative analysis at the light microscope level revealed, however, that the hormone prolactin-secreting eta cells of the rostral pars distalis and the hypocalcin-secreting cells of the Corpuscles of Stannius may be arranged in a lamellar pattern comprized of synchronous bands of cells in like-phase of a secretory cycle consisting of four stages - synthesis, storage, release and reorganization. Such synchronized cell cycles in these glands have not heretofore been described in literature. It is suggested that the maintenance of at least 255? of the cells in any one phase of the cycle ensures a supply of the required hormone at all times.
Resumo:
The sequential banding patterns of the larval salivary gland polytene chromosomes of seven species of Inseliellum (Diptera: Simuliidae) were mapped. This was completed through the comparison with the standard maps of an eighth species of Inseliellum, Simulium cataractarum. During chromosomal analysis, both fixed and floating inversions were identified. A floating inversion (IIL-l ex,2ex) revealed a cytotype within Simulium exasperans that is distributed between two islands, Moorea and Tahiti. Inversion data revealed three shared fixed inversions that could be used as phylogenetic characters. In addition, the placement of a chromosomal landmark (the nucleolar organizer, or NO) was used as a phylogenetic character. The result of a cytophylogenetic (transformational) analysis showed two groups: the NO-IL group, and the NO-IS group. A combined phylogeny was created using the published morphological data and the cytological data of the eight species. The combined tree did not differ from the morphological data only tree. Possible routes of dispersal are hypothesized using geological, chromosomal, and phylogenetic data. These data showed a general pattern of dispersal and colonization from older islands to younger islands, with one possible instance of dispersal from younger to older islands. It is postulated that inter-island speciation has allowed this dispersal and colonization, but intra-island speciation has created the diversity seen in Inseliellum.
Resumo:
Trilobites ¥tere collected from Ordovician and Devonian formations of Ontario} New York} Ohio} Oklahoma} and Indiana. Diversity was generally low} but 19..?telllS and Ph..~tY>ps ¥tere the most abundant species from the Ordovician and Devonian} respectively. Recent marine arthropods ¥tere collected from the Atlantic shore of the middle Florida Keys} and from the Pacific and lagoonal waters at Cape Beale} B. C. Fresh-water arthropods were collected along the shore of the Severn River in northcentral Ontario. Cuticles ¥tere analyzed for major} minor and trace elements, 180 and 13C isotopes, as ¥tell as examined by scanning electron micr?scope to identify original and diagenetic fabrics. Examination of trilobite cuticles by scanning electron microscope revealed several microstructures consistent with those observed in Recent arthropods. Microstructures} such as setae and tegumental gland duct openings} in like sized Lim/IllS and Isoteline trilobites may indicate common ancestral origins for these organisms, or simply parallel cuticle evolutions. The dendritic microstructure, originally' thought to be a diagenetic indicator, was found in Recent specimens and therefore its presence in trilobites may be suggestive of the delicate nature of diagenesis in trilobites. The absence of other primary microstructures in trilobites may indicate alteration, taxonomic control} or that there is some inherent feature of S EM examination which may' not allow detection of some features} while others are apparently visit·le onl~1 under SH.·1. The region of the cuticle sampled for examination is also a major influence in detecting pristine microstructures, as not all areas of trilobite and Recent arthropod cuticles will have microstructures identifiable in a SEM study. Subtleties in the process of alteration, however} ma~·· leave pristine microstructures in cuticles that are partial~/ silicified or do 10m itized, and degree and type of alteration may vary stratigraphically and longitudinally within a unit. The presence of fused matrices, angular calcite rhombs, and pyrite in the cuticle are thought to be indicative of altered cuticles, although pyritization may not affect the entire cuticle. t-~atural processes in Recent arthropods, such as molting, lead to variations in cuticle chemistries, and are thought to reflect the area of concentration of the elements during calcification. The level of sodium in Recent arthropods was found to be higher than that in trilobites, but highly mobile when sUbjected to the actions of VY'€'athering. Less saline water produced lovy'€'r magnesium and higher calcium values in Recent specimens .. and metal variations in pristine Ordovician trilobite cuticle appears to follow the constraints outlined for Recent arthropods, of regulation due to the chemislry of the surrounding medium. In diagenetic analysis, sodium, strontium and magnesium proved most beneficial in separating altered from least altered trilobites. Using this criterion, specimens from shale show the least amount of geochemical alteration, and have an original mineralogy of 1.7 - 2.4 mole % MgC03 (8000 t(> 9500 ppm magnesium) for both /s>..?/e/11S lJA'i.riff!11S and PseIAit'11J17ites I..itmirpin..itl/~ and 2.8 - 3.3 mole % MgC03 (5000 to 7000 ppm magnesium) for Ph.i{).?PS This is Slightly lower than the mineralogy of Recent marine arthropods (4.43 - 12.1 mole % MgC03), and slightly higher than that of fresh-water crayfish (0.96 - 1.82 mole % MgC03). Geochemically pristine trilobites were also found to possess primary microstructures. Stable isotope values and trends support the assertion that marine-meteoriclburial fluids were responsible for the alteration observed in a number of the trilobite specimens. The results of this stUdy suggest that fossil material has to be evaluated separately along taxonomic and lithological lines to arrive at sensible diagenetic and e nvironmenta I interpretations.
Resumo:
Both learning and basic biological mechanisms have been shown to play a role in the control of protein int^e. It has previously been shown that rats can adapt their dietary selection patterns successfully in the face of changing macronutrient requirements and availability. In particular, it has been demonstrated that when access to dietary protein is restricted for a period of time, rats selectively increase their consumption of a proteincontaining diet when it becomes available. Furthermore, it has been shown that animals are able to associate various orosensory cues with a food's nutrient content. In addition to the role that learning plays in food intake, there are also various biological mechanisms that have been shown to be involved in the control of feeding behaviour. Numerous studies have documented that various hormones and neurotransmitter substances mediate food intake. One such hormone is growth hormone-releasing factor (GRF), a peptide that induces the release of growth hormone (GH) from the anterior pituitary gland. Recent research by Vaccarino and Dickson ( 1 994) suggests that GRF may stimulate food intake by acting as a neurotransmitter in the suprachiasmatic nucleus (SCN) and the adjacent medial preoptic area (MPOA). In particular, when GRF is injected directly into the SCN/MPOA, it has been shown to selectively enhance the intake of protein in both fooddeprived and sated rats. Thus, GRF may play a role in activating protein consumption generally, and when animals have a need for protein, GRF may serve to trigger proteinseeking behaviour. Although researchers have separately examined the role of learning and the central mechanisms involved in the control of protein selection, no one has yet attempted to bring together these two lines of study. Thus, the purpose of this study is to join these two parallel lines of research in order to further our understanding of mechanisms controlling protein selection. In order to ascertain the combined effects that GRF and learning have on protein intake several hypothesis were examined. One major hypothesis was that rats would successfully alter their dietary selection patterns in response to protein restriction. It was speculated that rats kept on a nutritionally complete maintenance diet (NCMD) would consume equal amount of the intermittently presented high protein conditioning diet (HPCD) and protein-free conditioning diet (PFCD). However, it was hypothesized that rats kept on a protein-free maintenance diet (PFMD) would selectively increase their intake of the HPCD. Another hypothesis was that rats would learn to associate a distinct marker flavour with the nutritional content of the diets. If an animal is able to make the association between a marker flavour and the nutrient content of the food, then it is hypothesized that they will consume more of a mixed diet (equal portion HPCD and PFCD) with the marker flavour that was previously paired with the HPCD (Mixednp-f) when kept on the PFMD. In addition, it was hypothesized that intracranial injection of GRF into the SCN/MPOA would result in a selective increase in HPCD as well as Mixednp-t consumption. Results demonstrated that rats did in fact selectively increase their consumption of the flavoured HPCD and Mixednp-f when kept on the NCMD. These findings indicate that the rats successfully learned about the nutrient content of the conditioning diets and were able to associate a distinct marker flavour with the nutrient content of the diets. However, the results failed to support previous findings that GRF increases protein intake. In contrast, the administration of GRF significantly reduced consumption of HPCD during the first hour of testing as compared to the no injection condition. In addition, no differences in the intake of the HPCD were found between the GRF and vehicle condition. Because GRF did not selectively increase HPCD consumption, it was not surprising that GRF also did not increase MixedHP-rintake. What was interesting was that administration of GRF and vehicle did not reduc^Mixednp-f consumption as it had decreased HPCD consumption.
Resumo:
In the field, mosquitoes characteristically feed on sugars soon after emergence and intermittently during their adult lives. Sugar meals are commonly derived from plant nectar and homopteran honeydew, and without them, adults can only survive for a few days on larval reserves. In addition to sugar, females of most species rely on blood for the initiation and maintenance of egg development; thus their reproductive success depends to some extent on the availability of blood hosts. Males, on the other hand, feed exclusively on sugars. Consequently, their sexual maturation and reproductive success is largely dependent upon access to sugar sources. Plant nectar and homopteran honeydew are the two main sugar sources utilized by mosquitoes in the wild. Previous laboratory studies had shown that differences between nectar sources can affect the survivorship and biting frequency of disease vectoring mosquitoes. However, little is known on how sugar composition influence the reproductive processes in male mosquitoes. Male mosquitoes transfer accessory gland proteins and other hormones to their mates along with sperm during mating. In the female, these seminal fluid constituents exert their influence on reproductive genes that control ovulation and vitellogenesis. The present study tests the hypothesis that the mates of males consuming different sugar meals will exhibit varying levels of induction of vitellogenin (a gene which regulates the expression of egg yolk precursor proteins). Real-time quantitative RT-PCR was used to investigate how each sugar meal indirectly influences vitellogenin mRNA abundance in female Anopheles stephensi following mating. Results indicate that mates of nectar-fed males exhibit 2-fold greater change in vitellogenin expression than the mates of honeydew-fed males. However, this response did not occur in non-blood fed controls. These findings suggest that the stimulatory effect of mating on vitellogenesis in blood meal-reliant (i.e. anautogenous) mosquitoes may only be synergistic in nature. The present study also sought to compare the potential fitness costs of mating incurred by females that do not necessarily require a blood meal to initiate a reproductive cycle (i.e., exhibit autogeny). Females of the facultatively autogenous mosquito, Culex molestus were allowed to mate with males sustained on either nectar or honedyew. Mean lifetime fecundity and survivorship of females under the two different mating regimes were then recorded. Additionally, one-dimensional gel electrophoresis was used to verify the transfer of male accessory gland proteins to the sperm storage organs of females during mating.While there was no significant difference in survival between the test treatments, the mates of nectar-fed males produced 11% more eggs on average than mates of honeydew-fed males. However, additional data are needed to justify the extrapolation of these findings to natural settings. These findings prompt further investigation as the differences caused by diet variation in males may be reflected across other life history traits such as mating frequency and insemination capacity.
Resumo:
Black fly (Simuliidae) silk is produced by the larvae and pharate pupae and is used for anchorage and cocoon production. There exists limited information on simuliid silks, including protein composition and genetic sequences encoding such proteins. The present study aimed to expand what is known about simuliid silks by examining the silks of several simuliid species and by making comparisons to the silk of non-biting midges (Chironomidae). Silk glands were dissected out of larval and pupal simuliids, and protein contents were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and visualized with silver stain. Protein contents were compared by mass in kilodaltons (kDa) between life stages and among species. Polymerase chain reaction (PCR) was used to expand upon known gene sequence information, and to determine the presence of genes homologous to chironomid silk. SDS-PAGE of cocoons revealed the presence of a 56 kDa and a 67 kDa protein. Silk gland contained as many as 28 different proteins ranging from 319 kDa to 8 kDa. Protein profiles vary among species, and group into large (>200), intermediate(>100), and small (<100) protein classes as is found in chironomids. It is likely that silk evolved in a common ancestor of simuliids and chironomids