4 resultados para many-body physics
em Brock University, Canada
Resumo:
Volume(density)-independent pair-potentials cannot describe metallic cohesion adequately as the presence of the free electron gas renders the total energy strongly dependent on the electron density. The embedded atom method (EAM) addresses this issue by replacing part of the total energy with an explicitly density-dependent term called the embedding function. Finnis and Sinclair proposed a model where the embedding function is taken to be proportional to the square root of the electron density. Models of this type are known as Finnis-Sinclair many body potentials. In this work we study a particular parametrization of the Finnis-Sinclair type potential, called the "Sutton-Chen" model, and a later version, called the "Quantum Sutton-Chen" model, to study the phonon spectra and the temperature variation thermodynamic properties of fcc metals. Both models give poor results for thermal expansion, which can be traced to rapid softening of transverse phonon frequencies with increasing lattice parameter. We identify the power law decay of the electron density with distance assumed by the model as the main cause of this behaviour and show that an exponentially decaying form of charge density improves the results significantly. Results for Sutton-Chen and our improved version of Sutton-Chen models are compared for four fcc metals: Cu, Ag, Au and Pt. The calculated properties are the phonon spectra, thermal expansion coefficient, isobaric heat capacity, adiabatic and isothermal bulk moduli, atomic root-mean-square displacement and Gr\"{u}neisen parameter. For the sake of comparison we have also considered two other models where the distance-dependence of the charge density is an exponential multiplied by polynomials. None of these models exhibits the instability against thermal expansion (premature melting) as shown by the Sutton-Chen model. We also present results obtained via pure pair potential models, in order to identify advantages and disadvantages of methods used to obtain the parameters of these potentials.
Resumo:
We study the phonon dispersion, cohesive and thermal properties of raxe gas solids Ne, Ar, Kr, and Xe, using a variety of potentials obtained from different approaches; such as, fitting to crystal properties, purely ab initio calculations for molecules and dimers or ab initio calculations for solid crystalline phase, a combination of ab initio calculations and fitting to either gas phase data or sohd state properties. We explore whether potentials derived with a certain approaxih have any obvious benefit over the others in reproducing the solid state properties. In particular, we study phonon dispersion, isothermal ajid adiabatic bulk moduli, thermal expansion, and elastic (shear) constants as a function of temperatiue. Anharmonic effects on thermal expansion, specific heat, and bulk moduli have been studied using A^ perturbation theory in the high temperature limit using the neaxest-neighbor central force (nncf) model as developed by Shukla and MacDonald [4]. In our study, we find that potentials based on fitting to the crystal properties have some advantage, particularly for Kr and Xe, in terms of reproducing the thermodynamic properties over an extended range of temperatiures, but agreement with the phonon frequencies with the measured values is not guaranteed. For the lighter element Ne, the LJ potential which is based on fitting to the gas phase data produces best results for the thermodynamic properties; however, the Eggenberger potential for Ne, where the potential is based on combining ab initio quantum chemical calculations and molecular dynamics simulations, produces results that have better agreement with the measured dispersion, and elastic (shear) values. For At, the Morse-type potential, which is based on M0ller-Plesset perturbation theory to fourth order (MP4) ab initio calculations, yields the best results for the thermodynamic properties, elastic (shear) constants, and the phonon dispersion curves.
Resumo:
The diffusion of Co60 in the body centered cubic beta phase of a ZrSOTi SO alloy has been studied at 900°, 1200°, and 1440°C. The results confirm earlier unpublished data obtained by Kidson17 • The temperature dependence of the diffusion coefficient is unusual and suggests that at least two and possibly three mechanisms may be operative Annealing of the specimen in the high B.C.C. region prior to the deposition of the tracer results in a large reduction in the diffusion coefficient. The possible significance of this effect is discussed in terms of rapid transport along dislocation network.
Resumo:
(A) Solid phase synthesis of oligonucleotides are well documented and are extensively studied as the demands continue to rise with the development of antisense, anti-gene, RNA interference, and aptamers. Although synthesis of RNA sequences faces many challenges, most notably the choice of the 2' -hydroxy protecting group, modified 2' -O-Cpep protected ribonucleotides were synthesized as alternitive building blocks. Altering phosphitylation procedures to incorporate 3' -N,N-diethyl phosphoramidites enhanced the overall reactivity, thus, increased the coupling efficiency without loss of integrety. Furthermore, technical optimizations of solid phase synthesis cycles were carried out to allow for successful synthesis of a homo UIO sequences with a stepwise coupling efficiency reaching 99% and a final yield of 91 %. (B) Over the past few decades, dipyrrometheneboron difluoride (BODIPY) has gained recognition as one of the most versatile fluorophores. Currently, BODIPY labeling of oligonucleotides are carried out post-synthetically and to date, there lacks a method that allows for direct incorporation of BODIPY into oligonucleotides during solid phase synthesis. Therefore, synthesis of BODIPY derived phosphoramidites will provide an alternative method in obtaining fluorescently labelled oligonucleotides. A method for the synthesis and incorporation of the BODIPY analogues into oligonucleotides by phosphoramidite chemistry-based solid phase DNA synthesis is reported here. Using this approach, BODIPY-labeled TlO homopolymer and ISIS 5132 were successfully synthesized.