3 resultados para maladie de Parkinson
em Brock University, Canada
Resumo:
The influence of peak-dose drug-induced dyskinesia (DID) on manual tracking (MT) was examined in 10 dyskinetic patients (OPO), and compared to 10 age/gendermatched non-dyskinetic patients (NDPD) and 10 healthy controls. Whole body movement (WBM) and MT were recorded with a 6-degrees of freedom magnetic motion tracker and forearm rotation sensors, respectively. Subjects were asked to match the length of a computer-generated line with a line controlled via wrist rotation. Results show that OPO patients had greater WBM displacement and velocity than other groups. All groups displayed increased WBM from rest to MT, but only DPD and NDPO patients demonstrated a significant increase in WBM displacement and velocity. In addition, OPO patients exhibited excessive increase in WBM suggesting overflow DID. When two distinct target pace segments were examined (FAST/SLOW), all groups had slight increases in WBM displacement and velocity from SLOW to FAST, but only OPO patients showed significantly increased WBM displacement and velocity from SLOW to FAST. Therefore, it can be suggested that overflow DID was further increased with increased task speed. OPO patients also showed significantly greater ERROR matching target velocity, but no significant difference in ERROR in displacement, indicating that significantly greater WBM displacement in the OPO group did not have a direct influence on tracking performance. Individual target and performance traces demonstrated this relatively good tracking performance with the exception of distinct deviations from the target trace that occurred suddenly, followed by quick returns to the target coherent in time with increased performance velocity. In addition, performance hand velocity was not correlated with WBM velocity in DPO patients, suggesting that increased ERROR in velocity was not a direct result of WBM velocity. In conclusion, we propose that over-excitation of motor cortical areas, reported to be present in DPO patients, resulted in overflow DID during voluntary movement. Furthermore, we propose that the increased ERROR in velocity was the result of hypermetric voluntary movements also originating from the over-excitation of motor cortical areas.
Resumo:
We investigated the likelihood that hypokinesia/bradykinesia coexist with druginduced dyskinesias (DID) in patients with Parkinson's disease (PD). The influence of dyskinesias on rapid alternating movements (RAM) was investigated in ten dyskinetic patients (DPD). Their motor performance was compared to that of ten age/gendermatched non-dyskinetic patients (NDPD) and ten healthy control subjects. Whole-body magnitude (WBM) and fast pronation-supination at the wrist were recorded using 6- degrees of freedom magnetic motion tracker and forearm rotational sensors, respectively. Subjects were asked to pronate-supinate their dominant hand for 10s. Pre- and postmeasures were taken in a neutral position for 20s. RANGE (measure of hypokinesia), DURATION (measure of bradykinesia). VELOCITY (measure of bradykinesia) and IRREGULARITY (measure of fluctuations in movement amplitude) were used to assess RAM performance. Results showed that DPD patients had greater WBM than NDPD and control groups during rest and RAM performance. There were no differences in performance between NDPD and DPD groups for RANGE, DURATION and VELOCITY, despite significant longer disease duration for the DPD group (DPD = 15.5 ± 6.2 years versus NDPD = 6.6 ± 2.6 years). However, both the NDPD and DPD groups showed lower RANGE, longer DURATION, and reduced VELOCITY compared to controls,, suggesting the presence of bradykinesia and hypokinesia. In the case of IRREGULARITY, DPD patients showed clear fluctuations in movement amplitude compared to the NDPD and control groups. However, the lack of correlation between WBM and IRREGULARITY within the DPD group (Spearman's rank order, Rho - 0.31, p > 0.05), suggests that DID was not the primary cause of the fluctuating movementamplitude observed in that group. In conclusion, these findings suggest that DID may coexists with bradykinesia and hypokinesia, but that they are not inevitably accompanied with worsening motor performance.
Resumo:
Parkinson’s disease (PD) is characterized by postural instability and gait impairment. Verbal instructions can reduce postural sway and improve gait performance in PD. For gait, this evidence is limited to unobstructed straight-path walking. As falls in PD often occur when turning, the purpose of this thesis was to determine if instructions can benefit turning performance in this population. Twelve individuals with PD performed two walking tasks (normal walking, walking with a 180 degree turn) under four instruction conditions (no instruction, take big steps, make larger trunk movements, focus on end and/or turn point). Task duration and trunk yaw and roll sway were calculated. In general, the results demonstrated that the instruction to take big steps improved performance for both tasks compared to providing no instruction or externally based instruction. These results suggest that instructions related to step amplitude may facilitate walking and turning performance in PD.