2 resultados para macular carotenoids
em Brock University, Canada
Resumo:
Crawford Lake is a meromictic lake, which is 24 m deep and has an area of 2.5 ha, and has never been reported to have mixed below 16 m. Lady Evelyn Lake, which became a reservoir when a dam was built in 1916, is dimictic with a maximum depth of about 35 m. 1 My research proved that both native chlorophylls and the ratio of chlorophyll derivatives to total carotenoids were better preserved in the shallower lake (Crawford Lake) because it was meromictic. Thus the anaerobic conditions in Crawford Lake below 16 m (monimolimnion) provide excellent conditions for pigment preservation. Under such conditions, the preservation of both chlorophylls and carotenoids, including oscillaxanthin and myxoxanthophyll, are extremely good compared with those of Lady Evelyn Reservoir, in which anaerobic conditions are rarely encountered at the mud-water interface. During the period from 1500 to 1900 A. D. in Crawford Lake, the accumulation rates of oscillaxanthin and myxoxanthophyll were extremely high, but those of chlorophyll derivatives and total carotenoids were relatively low. This was correlated with the presence of a dense benthic mat of cyanobacteria near the lake's chemocline. Competition for light between the deep dwelling cyanobacteria and overlying phytoplankton in this meromictic lake would have been intensified as the lake became more and more eutrophic (1955-1991 A. D.). During the period from 1955 to 1991 A. D., the accumulation rates of chlorophyll derivatives and total carotenoids in the sediment core from Crawford Lake (0-7.5 cm, 1955-present) increased. During this same period, the accumulation rates of cyanobacterial pigments (Le. oscillaxanthin and myxoxanthophyll) declined as the lake became more eutrophic. Because the major cyanobacteria in Crawford Lake are benthic mat forming Lyngbya and Oscillatoria and not phytoplankton, eutrophication resulted in a decline of the mat forming algal pigments. This is important because in previous palaeolimnological studies the concentrations of oscillaxanthin and myxoxanthophyll have been used as correlates with lake trophic levels. The results of organic carbon a13c analysis on the Crawford Lake sediment core supported the conclusions from the pigment study as noted above. High values of a13c at the depth of 34-48 cm (1500-1760 A. D.) were related to a dense population of benthic Oscillatoria and Lyngbya living on the bottom of the lake during that period. The Oscillatoria and Lyngbya utilized the bicarbonate, which had a high a 13C value. Very low values were found at 0-7 cm in the Crawford sediment core. At this time phytoplankton was the main primary producer, which enriched 12C by photosynthetic assimilation.
Resumo:
ABSTRACT Photosynthetic state transitions were investigated in the cyanobacterium Synechococcus sp. PCC 7002 in both wild-type cells and mutant cells lacking phycobilisomes. Preillumination in the presence of DCMU (3(3,4 dichlorophenyl) 1,1 dimethyl urea) induced state 1 and dark adaptation induced state 2 in both wild-type and mutant cells as determined by 77K fluorescence emission spectroscopy. Light-induced transitions were observed in the wildtype after preferential excitation of phycocyanin (state 2) or preferential excitation of chlorophyll .a. (state 1). The state 1 and 2 transitions in the wild-type had half-times of approximately 10 seconds. Cytochrome f and P-700 oxidation kinetics could not be correlated with any current state transition model as cells in state 1 showed faster oxidation kinetics regardless of excitation wavelength. Light-induced transitions were also observed in the phycobilisomeless mutant after preferential excitation of short wavelength chlorophyll !l. (state 2) or carotenoids and long wavelength chlorophyll it (state 1). One-dimensional electrophoresis revealed no significant differences in phosphorylation patterns of resolved proteins between wild-type cells in state 1 and state 2. It is concluded that the mechanism of the light state transition in cyanobacteria does not require the presence of the phycobilisome. The results contradict proposed models for the state transition which require an active role for the phycobilisome.