3 resultados para mRNA expression level

em Brock University, Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The newt, Notopthalmus viridescens is one of the few tet rapod vertebrates capable of extensive regeneration of the central nervous system, however, the factors involved in this process are still unknown. Chemokine signalling through the receptor CXCR4, has been found to be involved in the development of the central nervous system of mammals and more recently in epimorphic fin regeneration in zebrafish. We have hypothesized that the CXCR4 signalling pathway is involved in spinal cord and tail regeneration in the adul t newt , possibly as a downstream target of retinoic acid signalling. We found that CXCR4 mRNA expression was observed in the brain, spinal cord, heart, gut, liver and regenerating tail blastemas. CXCR4 expression increased over the f i rst 12 days of tail regeneration and returned to basal expression levels at day 21 of regeneration. Inhibition of CXCR4 wi th AMD3100, a specific receptor antagonist, led to a decrease in CXCR4 mRNA in the regenerating tail 14 days post amputation. Histological analysis suggests a delay in the early stages of tail and spinal cord regeneration. Spinal cord explants t reated wi th CXCL12, the ligand to CXCR4, displayed enhanced neurite outgrowth in vitro. Explants t reated wi th AMD3100 abolished any retinoic acid enhanced neurite outgrowth effects suggesting a link between these signalling pathways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trichoderma aggressivum f. aggressivum is a filamentous soil fungus. Green mold disease of commercial mushrooms caused by this species in North America has resulted in millions of dollars in lost revenue within the mushroom growing industry. Research on the molecular level of T aggressivum have jus t begun with the goal of understanding the functions of each gene and protein, and their expression control. Protein targeting has not been well studied in this species yet. Therefore, the intent of this study was to test the protein localization and production levels in T aggressivum with green fluorescent protein (GFP) with an intron and tagged with either nuclear localization signal (NLS) or an endoplasmic reticulum retention signal (KDEL). Two GFP constructs (with and without the intron) were used as controls in this study. All four constructs were successfully transferred into T aggressivum and all modified strains showed similar growth characteristics as the wild type non-transformed isolate. GFP expression was detected from all modified T aggressivum with confocal microscopy and the expression was similar in all four strains. The intron tested in this study had no or very minor effects as GFP expression was similar with or without it. The GFP signal increased over a 5 day period for all transformants, while the GFP to total protein ratio decreased over the same period for all transformants. The GFP-KDEL transformant showed similar protein expression level and localization as did the control transformant lacking the KDEL retention signal. The GFP-NLS transformant similarly failed to localize GFP into nucleus as fluorescence with this strain was virtually identical to the GFP transformant lacking the NLS. Thus, future research is required to find effective localization signals for T aggressivum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The vitamin A metabolite, retinoic acid (RA) is known to play an important role in the development, patterning and regeneration of nervous tissue, both in the embryo and in the adult. Classically, RA is known to mediate the transcription of target genes through the binding and activation ofits nuclear receptors: the retinoic acid receptors (RARs) and retinoid X receptors (RXRs). Recently, mounting evidence from many animal models has implicated a number of RA-mediated effects operating independently of gene transcription, and thus highlights nove~ nongenornic actions of RA. For example, recent work utilizing cultured neurons from the pond snaa Lymnaea stagnalis, has shown that RA can elicit a regenerative response, growth cone turning, independently of "classical" transcriptional activation While this work illustrates a novel regeneration-inducing effect in culture, it is currently -unknown whether RA also induces regeneration in situ. This study has sought to determine RA's regenerative effucts at the morphological and molecular levels by utilizing an in situ approach focusing on a single identified dopaminergic neuron which possesses a known "mapped" morphology within the CNS. These studies show, for the first time in an invertebrate, that RA can increase neurite outgrowth of dopaminergic cells that have undergone a nerve-crush injury. Utilizing Western blot analysis, it was shown that this effect appears to be independent of any changes in whole CNS expression levels of either the RAR or RXR. Additionally, utilizing immunohistochemistry, to examine protein localization, there does not appear to be any obvious changes in the RXR expression level at the crush site. Changes in cell morphology such as neurity extension are known to be modulated by changes in neuronal firing activity. It has been previously shown that exposure to RA over many days can lead to changes in the electrophysiological properties of cultured Lymnaea neurons; however, no studies have investigated whether short-term exposure to RA can elicit electrophysiological changes and/or changes in firing pattern of neurons in Lymnaea or any other species. The studies performed here show, for the first time in any species, that short-tenn treatment with RA can elicit significant changes in the firing properties of both identified dopaminergic neurons and peptidergic neurons. This effect appears to be independent of protein synthesis, activation of protein kinase A or phospholipase C, and calcium influx but is both dose-dependent and isomer-dependent. These studies provide evidence that the RXR, but not RAR, may be involved, and that intracellular calcium concentrations decrease upon RAexposure with a time course, dose-dependency and isomer-dependency that coincide with the RA-induced electrophysiological changes. Taken together, these studies provide important evidence highlighting RA as a multifunctional molecule, inducing morphological, molecular and electrophysiological changes within the CNS, and highlight the many pathways through which RA may operate to elicit its effects.