6 resultados para liposome stabilization
em Brock University, Canada
Resumo:
Abstract This thesis seeks to answer a number of questions concerning the deficit and debt in Canada. It focuses pri.arily on the federal level of government but with SOBe discussion of provincial governaent policy as well. In ~997, Canada's federal debt caae close ro six hundred billion dollars - $594 billion or 74.4 % of Gross Do.estic Product (GDP) to be exact. The purpose of this theses is threefold: To find out why Canada accu.ulated such a debt, to discover if there is a so-called debt crisis; and to discover if it is possible to preserve Canada's national welfare state given the financial restraints that have been adopted by both federal and provincial governments. Politicians are torn between economist' two contrasting views regarding deficits: Neo-Keynesian and neo-conservative. The neoKeynesian school focuses al1llOst exclusively on the short term stability of the economy and tends to dismiss concerns regarding the level of debt. Neo conservatives focus almost exclusively on the perceived costs of growth in the national debt and are willing to forego any stabilization benefits to ensure that the debt is controlled. These polar view do have one thing in coa.on; both confix-. that deficits influence govermaent policies. Both of these econoBic theories will have far-reaching influences on the federal gover1lJlJent's decision-making process. These economic theories will be discussed throughout this thesis.
Resumo:
Bank stabilization structures are used to prevent the loss of valuable land within the urban environment and the decision for the type of structure used depends on the properties of the stream. In the urban areas of Southern Ontario there is a preference for the use of armourstone blocks as bank stabilization. The armourstone revetment is a free standing stone structure with large blocks of stone layered vertically and offset from one another. During fieldwork at Forty Mile Creek in Grimsby, Ontario armourstone failure was identified by the removal of two stones within one column from the wall. Since the footer stones were still in place, toe scour was eliminated as a cause of failure. Through theoretical, field, and experimental work the process of suction has been identified as a mode of failure for the armourstone wall and the process of suction works similarly to quarrying large blocks of rock off bedrock streambeds. The theory of lateral suction has previously not been taken into consideration for the design of these walls. The physical and hydraulic evidence found in the field and studied during experimental work indicate that the armourstone wall is vulnerable to the process of suction. The forces exerted by the flow and the resistance of the block determine the stability of the armourstone block within the wall. The design of the armourstone wall, high surface velocities, and short pulses of faster flowing water within the profile could contribute to armourstone failure by providing the forces needed for suction to occur, therefore adjustments to the design of the wall should be made in order to limit the effect.
The kinetics and solvent effects on the thermal decomposition of isopropyl peroxide and 1, 2-dioxane
Resumo:
Rates of H2 formation have been determined for the thermal decomposition of isopropyl peroxide at l30o-l50oC in toluene and methanol and at l400C in isopropyl alcohol and water. Product studies have been carried out at l400C in these solvents. The decomposition of isopropyl peroxide was shown to be unimolecular with energies of activation in toluene, and methanol of 39.1, 23.08 Kcal/mole respectively. It has been shown that the rates of H2 formation in decomposition of isopropyl peroxide are solvent dependent and that the ~ vs "'2';' values (parameters for solvent polarity) givesastraight line. Mechanisms for hydrogen production are discussed which satisfactorily explain the stabilization of the six-centered transition state by the solvent. One possibility is that of conformation stabilization by solvent and the other, a transition state with sufficient ionic character to be stabilized by a polar solvent. Rates of thermal decomposition of 1,2-dioxane in tert-butylbenzene at l40o-l70oC have been determined. The activation energy was found to be 33.4 Kcal/mole. This lower activation energy, compared to that for the decomposition of isopropyl peroxide in toluene (39.1 Kcal/mole) has been explained in terms of ring strain. Decomposition of 1,2 dioxane in MeOH does not follow a first order reaction. Several mechanisms have been suggested for the products observed for decomposition of 1;2-dioxane in toluene and methanol.
Resumo:
Single photon timing was used to study picosecond chlorophyll a fluorescence decay kinetics of pH induced non-photochemical quenching in spinach photosystem 2 particles. The characteristics of this quenching are a decrease in chlorophyll a fluorescence yield as well as a decrease in photochemistry at low pH. Picosecond kinetics of room temperature fluorescence temporally resolve the individual components of the steady state fluorescence yield into components that are related to primary energy conversion processes in photosystem 2. Four components were resolved for dark adapted (Fo), light saturated (Fm), and chemically reduced (Nadithionite) photosystem 2 reaction centres. The fastest and slowest components, indicative of energy transfer to and energy capture by the photosystem 2 reaction centre and uncoupled ("dead") chlorophyll, respectively, were not affected by changing pH from 6.5 to 4.0. The two intermediate components, indicative of electron transfer processes within the reaction centre of photosystem 2, were affected by the pH change. Results indicate that the decrease in the steady state fluorescence yield at low pH was primarily due to the decrease in lifetime and amplitude of the slower of the intermediate components. These results imply that the decrease in steady state fluorescence yield at low pH is not due to changes in energy transfer to and energy capture by the photosystem 2 reaction centre, but is related to changes in charge stabilization and charge recombination in the photosystem 2 reaction centre.
Resumo:
Please consult the paper edition of this thesis to read. It is available on the 5th Floor of the Library at Call Number: Z 9999 P65 D53 2007
Resumo:
Endonuclease G (EndoG) is a well conserved mitochondrial nuclease with dual lethal and vital roles in the cell. It non-specifically cleaves endogenous DNA following apoptosis induction, but is also active in non-apoptotic cells for mitochondrial DNA (mtDNA) replication and may also be important for replication, repair and recombination of genomic DNA. The aim of our study was to examine whether EndoG exerts similar activities on exogenous DNA substrates such as plasmid DNA (pDNA) and viral DNA vectors, considering their importance in gene therapy applications. The effects of EndoG knockdown on pDNA stability and levels of encoded reporter gene expression were evaluated in the cervical carcinoma HeLa cells. Transfection of pDNA vectors encoding short-hairpin RNAs (shRNAs) reduced levels of EndoG mRNA and nuclease activity in HeLa cells. In physiological circumstances, EndoG knockdown did not have an effect on the stability of pDNA or the levels of encoded transgene expression as measured over a four day time-course. However, when endogenous expression of EndoG was induced by an extrinsic stimulus (a cationic liposome transfection reagent), targeting of EndoG by shRNA improved the perceived stability and transgene expression of pDNA vectors. Therefore, EndoG is not a mediator of exogenous DNA clearance, but in non-physiological circumstances it may non-specifically cleave intracellular DNA regardless of its origin. To investigate possible effects of EndoG on viral DNA vectors, we constructed and evaluated AdsiEndoG, a first generation adenovirus (Ad5 ΔE1) vector encoding a shRNA directed against EndoG mRNA, along with appropriate Ad5 ΔE1 controls. Infection of HeLa cells with AdsiEndoG at a multiplicity of infection (MOI) of 10 p.f.u./cell resulted in an early cell proliferation defect, absent from cells infected at equivalent MOI with control Ad5 ΔE1 vectors. Replication of Ad5 ΔE1 DNA was detected for all vectors, but AdsiEndoG DNA accumulated to levels that were 50 fold higher than initially, four days after infection, compared to 14 fold for the next highest control Ad5 ΔE1 vector. Deregulation of the cell cycle by EndoG depletion, which is characterized by an accumulation of cells in the G2/M transition, is the most likely reason for the observed cell proliferation defect. The enhanced replication of AdsiEndoG is consistent with this conclusion, as Ad5 ΔE1 DNA replication is intimately related to cell cycling and prolongation or delay in G2/M greatly enhances this process. Furthermore, infection of HeLa with AdsiEndoG at MOI of 50 p.f.u./cell resulted in an almost complete disappearance of viable, adherent tumour cells from culture, whereas almost a third of the cells were still adherent after infection with control Ad5 ΔE1 vectors, relative to the non-infected control. Therefore, targeting of EndoG by RNAi is a viable strategy for improving the oncolytic properties of first generation adenovirus vectors. In addition, AdsiEndoG-mediated knockdown of EndoG reduced homologous recombination between pDNA substrates in HeLa cells. The effect was modest but, nevertheless demonstrated that the proposed role of EndoG in homologous recombination of cellular DNA also extends to exogenous DNA substrates.