4 resultados para lipid analysis

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Membrane lipid composition, which includes phospholipid (PL) headgroup, and fatty acid (FA) saturation, has been shown to affect cellular function. The sarcolemma (SL) membrane is integral to skeletal muscle function and health. Previous studies assessing SL lipid composition are limited as they have 1) restricted analysis to a PL level and neglected FA composition and 2) relied on aggressive membrane isolation procedures resulting in t-tubule and sarcoplasmic reticulum contamination and unknown levels of nuclear and mitochondrial contamination. Thus, to overcome these limitations, this study assessed a method of individually skinned skeletal muscle fibres as an alternative to analyze complete sarcolemmal membrane lipid composition. The major findings of this study were 1) complete SL lipid composition can be obtained 2) the SL had higher sphingomyelin content than previous studies and 3) the SL membrane had minimal nuclear and mitochondrial contamination and was void of contamination from sarcoplasmic reticulum and t-tubules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

examined in Choanephora cucurbita rum during the early stages of infection by Piptocephalis virginiana » There was a small but consistent increase in the leakage of electrolytes, amino acids and sugars as a result of infection. These low levels of differential leakage in infected tissues are explained on the basis of the nature of this obligate, biotrophic, mycoparasitic system. Quantitative analysis of the twenty six amino acids and amino compounds detected in the leacheates — showed similar profiles in infected and control host and no new species of amino acids or amino compounds were detected in either infected or control host leacheates. Comparatively high amounts of aspartic acid, glutamic acid and alanine were found in the leacheates of host and infected host . Analyses of the sugars comprising the leacheates of infected and control host showed the presence of eight sugars, among which glucose was found in significant amounts (50-53%) ' The nutritional implication of this preferential leakage is discussed. No significant difference was observed in the leacheates of infected host sugar profiles compared with that of the control host. Profiles of the internal pool sugars of infected and control host did not reflect that obtained from the leacheate data, perhaps owing to leakage of sugars in a selective manner . Membrane lipid analyses yielded higher levels of lipid in infected host compared with the control, both at the 24 h and 36 h analyses. In addition, preliminary investigations of phosphorous-32 incorporation and turnover in phospholipids showed higher levels of 32p incorporation and turnover in infected host compared with the control. No apparent difference was noted in the profiles of the neutral lipid classes and the polar lipid classes of the membrane lipids as determined by one and two dimensional thin-layer chromatography respectively. However, a small but consistently higher degree of unsaturation was detected in the fatty acids of infected tissue compared with the control. Also, '^''-^^''^^'-'-^'^^c acid, a polyunsaturated fatty acid previously reported to show a direct correlation during the early stages of infection and the degree of parasitism of P. virginiana on C. cucurbitarum , was found in higher amounts in infected host membrane lipids compared with that of the control host. The implications of these membrane lipid alterations are discussed with particular reference to the small but consistently higher leakage of electrolytes, amino acids and sugars observed during infection in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fatty acid composition of the total, neutral, sterol, free fatty acid and polar-lipid fractions in the mycelium of Choanephora cucurbitarum was determined. The major fatty acids in all lipid fractions were palmitic, oleic, linoleic and y-linolenic acid. Different lipid fractions did not show any particular preference for any individual fatty acid; however, the degree of unsaturation was different in various lipid fractions. Addition of glutamic acid to the malt-yeast extract medium resulted in the biosynthesis of a number of long-chain fatty acids beyond y-linolenic acid. These fatty acids, e.g. C22~1' C24:0 and C26=Q were never observed to be present in the fungus when grown on a malt-yeast extract medium without glutamic acid. Furthermore, thin-layer chromatographic analysis showed a larger and denser spot of diphosphatidyl glycerol from the mycelium grown on the glutamic acid medium than from the control mycelium. Various cultural conditions such as temperature, age, pH, light and carbon:nitrogen ratio in the growth medium used in this study did not alter the qualitative profile of fatty acids normally present in the organism. Neither did these conditions stimulate the production of further long-chain fatty acids (C20 - C26) beyond y-linolenic acid as observed in growth media containing glutamic acid. These cultural conditions influenced the degree of unsaturation, this being due mainly to changes in the concentration of y-linolenic acid. The fatty acid pattern of the lipid fractions though the same qualitatively, differed quantitatively due to the variation in the y-linolenic acid content under different cultural conditions. The degree of unsaturation of various lipid fractions decreased with increases in temperature, light intensity and pH, but within each treatment the same pattern of decreasing degree of unsaturation with increasing age was observed. The cultural conditions, used in this study, are also known to influence the degree and rate of development of the parasite, Piptocephalis virginiana. A direct correlation was observed between the levels of y-linolenic acid in C. cucurbitarum during the early stages of growth (24 h) and the degree of parasitism of P. virginiana. The amount of y-linolenic acid present in the host mycelium was found to be unrelated to either the dry weight of the mycelium or to the total lipid contents. K. virginiana is confined to host species which produce y-linolenic acid in their mycelium. The lipid profile of the host, C. cucurbitarum, did not show a significant qualitative or quantitative change in the lipid profile as a result of infection by the parasite, P. virginiana,e However, an increase in the total lipid was observed in the infected host mycelium. The significance of these results is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The a-tocopherol transfer protein (a-TTP) is responsible for the retention of the atocopherol form of vitamin E in living organisms. The detailed ligand transfer mechanism by a-TTP is still yet to be fully elucidated. To date, studies show that a-TTP transfers a-tocopherol from late endosomes in liver cells to the plasma membrane where it is repackaged into very low density lipoprotein (VLDL) and released into the circulation. Late endosomes have been shown to contain a lipid known as lysobisphosphatidic acid (LBP A) that is unique to this cellular compartment. LBPA plays a role in intracellular trafficking and controlling membrane curvature. Taking these observations into account plus the fact that certain proteins are recruited to membranes based on membrane curvature, the specific aim of this project was to examine the effect of LBP A on a-TTP binding to lipid membranes. To achieve this objective, dual polarization interferometry (DPI) and a vesicle binding assay were employed. Whilst DPI allows protein binding affinity to be measured on a flat lipid surface, the vesicle binding assay determines protein binding affinity to lipid vesicles mimicking curved membranes. DPI analysis revealed that the amount of a-TTP bound to lipid membranes is higher when LBPA is present. Using the vesicle binding assay, a similar result was seen where a greater amount of protein is bound to large unilamellar vesicles (LUV s) containing LBP A. However, the effect of LBP A was attenuated when small unilamellar vesicles (SUVs) were replaced with LUVs. The outcome of this project suggests that aTTP binding to membranes is influenced by membrane curvature, which in turn is induced by the presence of LBP A.