5 resultados para lipase
em Brock University, Canada
Resumo:
The first part of this thesis studied the capacity of amino acids and enzymes to catalyze the hydrolysis and condensation of tetraethoxysilane and phenyltrimethoxysilane. Selected amino acids were shown to accelerate the hydrolysis and condensation of tetraethoxysilane under ambient temperature, pressure and at neutral pH (pH 7±0.02). The nature of the side chain of the amino acid was important in promoting hydrolysis and condensation. Several proteases were shown to have a capacity to hydrolyze tri- and tet-ra- alkoxysilanes under the same mild reaction conditions. The second part of this thesis employed an immobilized Candida antarctica lipase B (Novozym-435, N435) to produce siloxane-containing polyesters, polyamides, and polyester amides under solvent-free conditions. Enzymatic activity was shown to be temperature dependent, increasing until enzyme denaturation became the dominant pro-cess, which typically occurred between 120-130ᵒC. The residual activity of N435 was, on average, greater than 90%, when used in the synthesis of disiloxane-containing polyesters, regardless of the polymerization temperature except at the very highest temperatures, 140-150ᵒC. A study of the thermal tolerance of N435 determined that, over ten reaction cycles, there was a decrease in the initial rate of polymerization with each consecutive use of the catalyst. No change in the degree of monomer conversion after a 24 hour reaction cycle was found.
Resumo:
Immobilized lipase B from Candida antarctica (N435) was investigated as a potential biocatalyst to generate silicone-based chiral polymers from monomers derived from the enzymatic dihydroxylation of bromobenzene. Several conditions and parameters have been investigated for this purpose and lipase transesterification preference to each of the free secondary alcohols in the chiral monomers was documented. The N435 was challenged with a series of substrates where the free alcohol moieties were systematically protected in order to study the substrate preference(s) for the transesterification reactions.
Resumo:
The unnatural threo-6-acetoxy-5-hexadecanolide and the natural mosquito oviposition pheromone erythro-6-acetoxy-5-hexadecanolide were synthesized in a diastereodivergent fashion in 44% and 33% overall yield respectively from 5-bromovaleric acid and undecanal. The key step utilized a chemoenzymatic epoxidation-lactonization of a naturally available fatty acid to form the 6-hydroxy-5-hexadecanolide core.17 The epoxidation strategy was later adapted to allow for an asymmetric synthesis. Shi epoxidation afforded highly enantioenriched (5R, 6R)-6-hydroxyhexadecanolide (er = 10) in 70 % overall yield. Other derivatives of the chiral ketone catalyst were also screened. Finally, attempts were made to obtain the correct stereochemistry at C(6) of the target with a dynamic kinetic transformation using lipase and a transfer hydrogenation catalyst. Epimerization of the lactol with the transfer hydrogenation catalyst was successful, but lipase mediated reactions halted at <10 % conversion.
Resumo:
The first and rate-limiting step of lipolysis is the removal of the first fatty acid from a triglyceride molecule; it is catalyzed by adipose triglyceride lipase (ATGL). ATGL is co-activated by comparative gene identification-58 (CGI-58) and inhibited by the G(0)/G(1) switch gene-2 protein (G0S2). G0S2 has also recently been identified as a positive regulator of oxidative phosphorylation within the mitochondria. Previous research has demonstrated in cell culture, a dose dependent mechanism for inhibition by G0S2 on ATGL. However our data is not consistent with this hypothesis. There was no change in G0S2 protein content during an acute lipolytic inducing set of contractions in both whole muscle, and isolated mitochondria yet both ATGL and G0S2 increase following endurance training, in spite of the fact that there should be increased reliance on intramuscular lipolysis. Therefore, inhibition of ATGL by G0S2 appears to be regulated through more complicated intracellular or post-translation regulation.
Resumo:
Immobilized lipase B from Candida antarctica (Novozym® 435, N435) was utilized as part of a chemoenzymatic strategy for the synthesis of branched polyesters based on a cyclotetrasiloxane core in the absence of solvent. Nuclear magnetic resonance spectroscopy and matrix-assisted laser desorption ionization time-of-flight mass spectrometry were utilized to monitor the reactions between tetraester cyclotetrasiloxanes and aliphatic diols. The enzyme-mediated esterification reactions can achieve 65– 80% consumption of starting materials in 24–48 h. Longer reaction times, 72–96 h, resulted in the formation of cross-linked gel-like networks. Gel permeation chromatography of the polymers indicated that the masses were Mw ¼ 11 400, 13 100, and 19 400 g mol 1 for the substrate pairs of C7D4 ester/ octane-1,8-diol, C10D4 ester/pentane-1,5-diol and C10D4 ester/octane-1,8-diol respectively, after 48 h. Extending the polymerization for an additional 24 h with the C10D4 ester/octane-1,8-diol pair gave Mw ¼ 86 800 g mol 1. To the best of our knowledge this represents the first report using lipase catalysis to produce branched polymers that are built from a cyclotetrasiloxane core.