13 resultados para light-induced change

em Brock University, Canada


Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the relationship between endothelin-1 (ET-1) stimulation and reactive oxygen species (ROS) production unknown in adventitial fibroblasts, I examined the ROS response to ET-1 and angiotensin (Ang II). ET-1 -induced ROS peaked following 4 hrs of ET-1 stimulation and was inhibited by an ETA receptor antagonist (BQ 123, 1 uM) an extracellular signal-regulated kinase (ERK) 1/2 inhibitor (PD98059, 10 uM), and by both a specific, apocynin (10 uM), and non-specific, diphenyleneiodonium (10 uM), NAD(P)H oxidase inhibitor. NOX2 knockout fibroblasts did not produce an ET-1 induced change in ROS levels. Ang II treatment increased ROS levels in a biphasic manner, with the second peak occurring 6 hrs following stimulation. The secondary phase of Ang II induced ROS was inhibited by an ATi receptor antagonist, Losartan (100 uM) and BQ 123. In conclusion, ET-1 induces ROS production primarily through an ETA-ERKl/2 NOX2 pathway, additionally, Ang II-induced ROS production also involves an ETa pathway.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two classes of compounds have been prepared and characterized as building blocks for chiral magnets and ferromagnetic conductors. In the fIrst project, the organic framework of a pentadentate, (N302) macro cycle has been synthetically modifIed to introduce phenyl substituents into its organic framework and the synthesis of four new [Fe(In(N302)(CN)2] complexes (I) - (IV) is presented. [Molecular diagram availble in pdf] This work represents the fIrst structural and magnetic studies of a family of spin crossover macrocycles that comprise of both structural and stereo-isomers. Magnetic susceptibility and Mossbauer data for the R,R-complex (I) is consistent with both a thermal and a light induced spin crossover transition. The X-ray data supports a change in geometry accompanying the thermal spin transition, from a high spin (HS) 7 -coordinate complex at room temperature to a low spin (LS) 5-coordinate complex at 100 K. The crystal structure ofthe racemic complex (III) reveals a HS, 7-coordinate complex at 200 K that undergoes no signifIcant structural changes on cooling. In contrast, the magnetic - susceptibility and Mossbauer data collected on a powder sample of the racemic complex are consistent with a LS complex. Finally, the meso complex (IV) was prepared and its structure and magnetic properties are consistent with a 5-coordinate LS complex that remains low spin, but undergoes conformational changes on cooling in solution. The chiral [Fe(H)(N302)(CN)2] macro cycle (I), together with its Mn(H) and Fe(H) derivatives have also been exploited as building blocks for the self-assembly of chiral magnets. In the second project, a synthetic route for the preparation of tetrathiafulvalene (TTF) donors covalently attached to a diisopropyl verdazyl radical via a cross conjugated pyridyl linker IS presented. Following this strategy, four new TTF-py- (diisopropyl)verdazyl radicals have been prepared and characterized (V) - (VIII) . [Molecular diagram available in pdf] The first (2:1) charge transfer complex ofa TTF-py-(diisopropyl)verdazyl radical donor and a TCNQ acceptor has been prepared and structurally characterized. The crystal packing shows that the donor and acceptor molecules are organized in a mixed stacking arrangement consistent with its insulating behaviour. EPR and magnetic susceptibility data support intramolecular ferromagnetic interactions between the TTF and the verdazyl radicals and antiferromagnetic interactions between TTF donors within a stack. In an attempt to increase the intramolecular exchange interaction between the two radicals, a TTF-x-(diisopropyl)verdazyl radical (IX) was prepared, where the two radicals are connected ia a conjugated divinylene linker. The neutral radical donors stack in a more favourable head-to-head arrangement but the bulky isopropyl groups prevent the donor radicals from stacking close enough together to facilitate good orbital overlap. [Molecular diagram available in pdf].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Higher plants have evolved a well-conserved set of photoprotective mechanisms, collectively designated Non-Photochemical Quenching of chlorophyll fluorescence (qN), to deal with the inhibitory absorption of excess light energy by the photosystems. Their main contribution originates from safe thermal deactivation of excited states promoted by a highly-energized thylakoid membrane, detected via lumen acidification. The precise origins of this energy- or LlpH-dependent quenching (qE), arising from either decreased energy transfer efficiency in PSII antennae (~ Young & Frank, 1996; Gilmore & Yamamoto, 1992; Ruban et aI., 1992), from alternative electron transfer pathways in PSII reaction centres (~ Schreiber & Neubauer, 1990; Thompson &Brudvig, 1988; Klimov et aI., 1977), or from both (Wagner et aI., 1996; Walters & Horton, 1993), are a source of considerable controversy. In this study, the origins of qE were investigated in spinach thylakoids using a combination of fluorescence spectroscopic techniques: Pulse Amplitude Modulated (PAM) fluorimetry, pump-probe fluorimetry for the measurement of PSII absorption crosssections, and picosecond fluorescence decay curves fit to a kinetic model for PSII. Quenching by qE (,..,600/0 of maximal fluorescence, Fm) was light-induced in circulating samples and the resulting pH gradient maintained during a dark delay by the lumenacidifying capabilities of thylakoid membrane H+ ATPases. Results for qE were compared to those for the addition of a known antenna quencher, 5-hydroxy-1,4naphthoquinone (5-0H-NQ), titrated to achieve the same degree of Fm quenching as for qE. Quenching of the minimal fluorescence yield, F0' was clear (8 to 130/0) during formation of qE, indicative of classical antenna quenching (Butler, 1984), although the degree was significantly less than that achieved by addition of 5-0H-NQ. Although qE induction resulted in an overall increase in absorption cross-section, unlike the decrease expected for antenna quenchers like the quinone, a larger increase in crosssection was observed when qE induction was attempted in thylakoids with collapsed pH gradients (uncoupled by nigericin), in the absence of xanthophyll cycle operation (inhibited by DTT), or in the absence of quenching (LlpH not maintained in the dark due to omission of ATP). Fluorescence decay curves exhibited a similar disparity between qE-quenched and 5-0H-NQ-quenched thylakoids, although both sets showed accelerated kinetics in the fastest decay components at both F0 and Fm. In addition, the kinetics of dark-adapted thylakoids were nearly identical to those in qEquenched samples at F0' both accelerated in comparison with thylakoids in which the redox poise of the Oxygen-Evolving Complex was randomized by exposure to low levels of background light (which allowed appropriate comparison with F0 yields from quenched samples). When modelled with the Reversible Radical Pair model for PSII (Schatz et aI., 1988), quinone quenching could be sufficiently described by increasing only the rate constant for decay in the antenna (as in Vasil'ev et aI., 1998), whereas modelling of data from qE-quenched thylakoids required changes in both the antenna rate constant and in rate constants for the reaction centre. The clear differences between qE and 5-0H-NQ quenching demonstrated that qE could not have its origins in the antenna alone, but is rather accompanied by reaction centre quenching. Defined mechanisms of reaction centre quenching are discussed, also in relation to the observed post-quenching depression in Fm associated with photoinhibition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is considerable interest in intramolecular energy transfer, especially in complexes which absorb visible light, because it is crucial to the better understanding of photoharvesting systems in photosynthetic organisms and for utilizing solar energy as well. Porphyrin dimers represent one of the best systems for the exploration of light-induced intramolecular energy transfer. Many kinds of porphyrins and porphyrin dimers have been studied over the past decade, however little attention has been paid to the influence of paramagnetic metals on the behavior of their excited states. In this thesis, Electron Paramagnetic Resonance Spectroscopy (EPR) is used to study such compounds. After light irradiation, porphyrins easily produce a variety of excited states, which are spin polarized and can be detected by the time-resolved (TR) EPR technique. The spin polarized results for vanadyl porphyrins, their electrostatically-coupled dimers, a covalently-linked copper porphyrin-free base porphyrin dimer, and free base porphyrins are presented in this thesis. From these results we can conclude that the spin polarization patterns of vanadyl porphyrins come primarily from the trip-quartet state generated by intersystem crossing (lSC) from the excited sing-doublet state through the trip-doublet state. The spin polarization pattern of electrostatically-coupled vanadyl porphyrin-free base porphyrin dimer is produced by the triplet state of the free base porphyrin half which is coupled to the unpaired electron on the vanadyl ion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ABSTRACT Photosynthetic state transitions were investigated in the cyanobacterium Synechococcus sp. PCC 7002 in both wild-type cells and mutant cells lacking phycobilisomes. Preillumination in the presence of DCMU (3(3,4 dichlorophenyl) 1,1 dimethyl urea) induced state 1 and dark adaptation induced state 2 in both wild-type and mutant cells as determined by 77K fluorescence emission spectroscopy. Light-induced transitions were observed in the wildtype after preferential excitation of phycocyanin (state 2) or preferential excitation of chlorophyll .a. (state 1). The state 1 and 2 transitions in the wild-type had half-times of approximately 10 seconds. Cytochrome f and P-700 oxidation kinetics could not be correlated with any current state transition model as cells in state 1 showed faster oxidation kinetics regardless of excitation wavelength. Light-induced transitions were also observed in the phycobilisomeless mutant after preferential excitation of short wavelength chlorophyll !l. (state 2) or carotenoids and long wavelength chlorophyll it (state 1). One-dimensional electrophoresis revealed no significant differences in phosphorylation patterns of resolved proteins between wild-type cells in state 1 and state 2. It is concluded that the mechanism of the light state transition in cyanobacteria does not require the presence of the phycobilisome. The results contradict proposed models for the state transition which require an active role for the phycobilisome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The proce-ss ofoxygenic photosynthesis is vital to life on Earth. the central event in photosynthesis is light induced electron transfer that converts light into energy for growth. Ofparticular significance is the membrane bound multisubunit protein known as Photosystem I (PSI). PSI is a reaction centre that is responsible for the transfer of electrons across the membrane to reduce NADP+ to NADPH. The recent publication ofa high resolution X-ray structure of PSI has shown new information about the structure, in particular the electron transfer cofactors, which allows us to study it in more detail. In PSI, the secondary acceptor is crucial for forward electron transfer. In this thesis, the effect of removing the native acceptor phylloquinone and replacing it with a series of structurally related quinones was investigated via transient electron paramagnetic resonance (EPR) experiments. The orientation of non native quinones in the binding site and their ability to function in the electron transfer process was determined. It was found that PSI will readily accept alkyl naphthoquinones and anthraquinone. Q band EPR experiments revealed that the non-native quinones are incorporated into the binding site with the same orientation of the headgroup as in the native system. X band EPR spectra and deuteration experiments indicate that monosubstituted naphthoquinones are bound to the Al site with their side group in the position occupied by the methyl group in native PSI (meta to the hydrogen bonded carbonyl oxygen). X band EPR experiments show that 2, 3- disubstituted methyl naphthoquinones are also incorporated into the Al site in the same orientation as phylloquinone, even with the presence of a halogen- or sulfur-containing side chain in the position normally occupied by the phytyl tail ofphylloquinone. The exception to this is 2-bromo-3-methyl --.- _. -. - -- - - 4 _._ _ _ - _ _ naphthoquinone which has a poorly resolved spectrum, making determination of the orientation difficuh. All of the non-native quinones studied act as efficient electron acceptors. However, forward electron transfer past the quinone could only be demonstrated for anthraquinone, which has a more negative midpoint potential than phylloquinone. In the case of anthraquinone, an increased rate of forward electron transfer compared to native PSI was found. From these results we can conclude that the rate ofelectron transfer from Al to Fx in native PSI lies in the normal region ofthe Marcus Curve.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two time-resolved EPR techniques, have been used to study the light induced electron transfer(ET) in Type I photosynthetic reaction centers(RCs). First, pulsed EPR was used to compare PsaA-M688H and PsaB-M668H mutants of Chlamydomonas reinhardtii and Synechosystis sp. PCC 6803.The out-of-phase echo modulation curves combined with other EPR and optical data show that the effect of the mutations is species dependent. Second, transient and pulsed EPR data are presented which show that PsaA-A660N and PsaB-A640N mutations in C. reinhardtii alter the relative quantum yield of ET in the A- and B-branches of PS I. Third, transient EPR studies on RCs from Heliobacillus mobilis that have been exposed to oxygen show partial inhibition of ET. In the RCs in which ET still occurs, the ET kinetics and EPR spectra show evidence of oxidation of some but not all of the, BChl g and BChl g' to Chl a.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Low levels of ionizing radiation induce two translocation responses in soybean: a reduction in photoassimilate export from leaves and a change in the distribution pattern of exported photoassimilate within the plant. In this investigation these responses have been further studied specifically to ascertain the site of radiation damage and to better understand the physiological responses observed. Experimentally the primary data was obtained from studies in which a mature trifoliate leaf of a young soybean plant (Glycine ~ L. cultivar Harosoy '63) is isolated in a closed transparent chamber and allowed to photoassimilate 14C02 for 15 minutes. This is followed by an additional 45 ~_il'1;ute period before the plant is sectl.o ne d an d 14 C-ra dl' oactl.v.l ty d eterml. ne d'l n a 11 parts. Such 14c data provides one with the magnitude and distribution pattern of translocation. Further analyses were conducted to determine the relative levels of the major photosynthetic products using the techniques of paper chromatography and autoradiography. Since differences between control and irradiated P 1 ants were not 0 b serve d l' n t h e par tl't"lo nlng 0 f 14 C between the 80% ethanol-soluble and -insoluble fractions 14 or in the relative amounts of C-products of photosynthesis, the reduction in export in irradiated plants is not likely due to reduced availability of translocatable materials. Data presented in this thesis shows that photoassimilate export was not affected by gamma radiation until a threshold dose between 2.0 and 3.0 krads was reached. It was also observed that radiation-induced damage to the export process was capable of recovery in a period of 1 to 2 hours provided high light intensity was supplied. In contrast, the distribution pattern was shown to be extremely radiosensitive with a low threshold dose between .25 and .49 krads. Although this process was also capable of recovery,lt" occurred much earlier and was followed by a secondary effect which lasted at least for the duration of the experiments. The data presented in this thesis is interpreted to suggest that the sites of radiation action for the two translocation responses are different. In regards to photoassimilate export, the site of action of ionizing radiation is the leaf, quite possibly the process of photophosphorylation which may provide energy directly for phloem loading and for membrane integrity of the phloem tissue* In regards to the pattern of distribution of exported photoassimilate, the site is likely the apical sink, possibly the result of changes of levels of endogenous hormones. By the selection of radiation exposure dose and time post-irradiation, it is possible to affect independently these two processes suggesting that each may be regulated independent of the other and involves a distinct site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis compares the responses of regenerating forelimb tissues of the newt Notophthalmu..f vlridescens to the stresses of hyperthermia and ID.echanical injury of amputation. In particular, both quantitative and qualitative changes in the synthesis of soluble proteins in stump tissues, including those of the heat shock protein family (HSP70-1ike) were examined. Results from SDS-PAGEfluorography indicate that the trauma of amputation mimics the heat shock response both quantitatively and temporally in its transient repression of the synthesis of most normal cellular proteins, and qualitatively. in the locaJized expression of two unique proteins (hsp30 and hsp70). Fluorography of proteins separated by twodimensional gets revealed that thelCl4:alizedt amputation induced 70kDa protein (amp70) was distinct from the more basic newt hsp/hsc70 isoforms. Although limb amputation resulted in an increase in the synthesis of HSP70 mRNA analogous to that induced by heat 3.b.OCKf amp70 did not cross-react with murine monoclonal antibodies directed against both the inducible and cognate HSP70 proteins of the human. Thus, the possible relationship of amp70 to other members of the HSP70-1ike protein family remains unclear. Western analyses indicated that the levels of the constitutive form of HSP70 (hsc70) were found to be regulated in a stage-dependent manner in the distal stump tissues of the regen,erating forelimb of the newt. The highest levels were found in the mid-late bud stage, a period during which rapidly dividing blastema cells begin to redifferentiate in a proximodistal direction. Immediately after amputation) hsc70 synthesis and accumulation was depressed below steady-state levels measured in the unamputated limb~ The results are discussed in light of a possible role for HSPs and amputatio~ induced proteins in the epimorphic regeneration of the amphibian limb.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical cross section of PS I in whole cells of Porphyridium cruentum (UTEX 161), held in either state 1 or state 2, was determined by measuring the change in absorbance at 820nm, an indication of P700+; the X-section of PS2 was determined by measuring the variable fluorescence, (Fv-Fo)/Fo, from PS2. Both cross-sections were 7 determined by fitting Poisson distribution equations to the light saturation curves obtained with single turnover laser flashes which varied in intensity from zero to a level where maximum yield occurred. Flash wavelengths of 574nm, 626nm, and 668nm were used, energy absorbed by PBS, by PBS and chla, and by chla respectively. There were two populations of both PSi and PS2. A fraction of PSi is associated with PBS, and a fraction of PS2 is free from PBS. On the transition S1->S2, only with PBS-absorbed energy (574nm) did the average X-section of PSi increase (27%), and that of PS2 decrease (40%). The fraction of PSi associated with PBS decreased, from 0.65 to 0.35, and the Xsection of this associated PS 1 increased, from 135±65 A2 to 400±300A2. The cross section of PS2 associated with PBS decreased from 150±50 A2 to 85±45 A2, but the fraction of PS2 associated with PBS, approximately 0.75, did not change significantly. The increase in PSi cross section could not be completely accounted for by postulating that several PSi are associated with a single PBS and that in the transition to state2, fewer PSi share the same number of PBS, resulting in a larger X-section. It is postulated that small changes occur in the attachment of PS2 to PBS causing energy to be diverted to the attached PSi. These experiments support neither the mobile-PBS model of state transitions nor that of spillover. From cross section changes there was no evidence of energy transfer from PS2 to PSi with 668nm light. The decrease in PS2 fluorescence which occurred at this wavelength cannot be explained by energy transfer; another explanation must be sought. No explanation was found for an observed decrease in PSi yield at high flash intensities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single photon timing was used to study picosecond chlorophyll a fluorescence decay kinetics of pH induced non-photochemical quenching in spinach photosystem 2 particles. The characteristics of this quenching are a decrease in chlorophyll a fluorescence yield as well as a decrease in photochemistry at low pH. Picosecond kinetics of room temperature fluorescence temporally resolve the individual components of the steady state fluorescence yield into components that are related to primary energy conversion processes in photosystem 2. Four components were resolved for dark adapted (Fo), light saturated (Fm), and chemically reduced (Nadithionite) photosystem 2 reaction centres. The fastest and slowest components, indicative of energy transfer to and energy capture by the photosystem 2 reaction centre and uncoupled ("dead") chlorophyll, respectively, were not affected by changing pH from 6.5 to 4.0. The two intermediate components, indicative of electron transfer processes within the reaction centre of photosystem 2, were affected by the pH change. Results indicate that the decrease in the steady state fluorescence yield at low pH was primarily due to the decrease in lifetime and amplitude of the slower of the intermediate components. These results imply that the decrease in steady state fluorescence yield at low pH is not due to changes in energy transfer to and energy capture by the photosystem 2 reaction centre, but is related to changes in charge stabilization and charge recombination in the photosystem 2 reaction centre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT The myosm regulatory light chain (RLC) of type II fibres is phosphorylated by Ca2+ -calmodulin dependent myosin light chain kinase (skMLCK) during muscular activation. The purpose of this study was to explore the effect of skMLCK gene ablation on the fatigability of mouse skeletal muscles during repetitive stimulation. The absence of myosin RLC phosphorylation in skMLCK knockout muscles attenuated contractile performance without a significant metabolic cost. Twitch force was potentiated to a greater extent in wildtype muscles until peak force had diminished to ~60% of baseline (37.2 ± 0.05% vs. 14.3 ± 0.02%). Despite no difference in peak force (Po) and shortening velocity (Vo), rate of force development (+dP/dt) and shortening-induced deactivation (SID) were almost two-fold greater in WT muscles. The present results demonstrate that myosin RLC phosphorylation may improve contractile performance during fatigue; providing a contractile advantage to working muscles and protecting against progressive fatigue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sluice Pond is a small (18 ha) and deep (Zmax 20.0 m) partially meromictic, pond in Lynn, Massachusetts that contains a diverse dinocyst record since the early Holocene. High dinocyst concentrations, including morphotypes not previously described, as well as the preservation of several specimens of cellulosic thecae are attributed to low dissolved oxygen (DO) in the basin. The fossil protozoan record supports the interpretation- thecamoebians were unable to colonize the basin until the middle Holocene and only became abundant when the drought-induced lowstand oxygenated the bottom waters. Protozoans tolerant of low DO became abundant through the late Holocene as water levels rose and cultural eutrophication produced a sharp increase in biochemical oxygen demand (BOD) beginning in the 17th century. Recent sediments contain a dominance of Peridinium willei, indicating cultural eutrophication and the planktonic ciliate Codonella cratera and the thecamoebian Cucurbitella tricuspis in the deep basin. Above the chemocline however, a diverse difflugiid thecamoebian assemblage is present.