10 resultados para lattice constant

em Brock University, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

By employing the embedded-atom potentials of Mei et ai.[l], we have calculated the dynamical matrices and phonon dispersion curves for six fee metals (Cu,Ag,Au,Ni,Pd and Pt). We have also investigated, within the quasiharmonic approximation, some other thermal properties of these metals which depend on the phonon density of states, such as the temperature dependence of lattice constant, coefficient of linear thermal expansion, isothermal and adiabatic bulk moduli, heat capacities at constant volume and constant pressure, Griineisen parameter and Debye temperature. The computed results are compared with the experimental findings wherever possible. The comparison shows a generally good agreement between the theoretical values and experimental data for all properties except the discrepancies of phonon frequencies and Debye temperature for Pd, Pt and Au. Further, we modify the parameters of this model for Pd and Pt and obtain the phonon dispersion curves which is in good agreement with experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have calculated the thermodynamic properties of monatomic fcc crystals from the high temperature limit of the Helmholtz free energy. This equation of state included the static and vibrational energy components. The latter contribution was calculated to order A4 of perturbation theory, for a range of crystal volumes, in which a nearest neighbour central force model was used. We have calculated the lattice constant, the coefficient of volume expansion, the specific heat at constant volume and at constant pressure, the adiabatic and the isothermal bulk modulus, and the Gruneisen parameter, for two of the rare gas solids, Xe and Kr, and for the fcc metals Cu, Ag, Au, Al, and Pb. The LennardJones and the Morse potential were each used to represent the atomic interactions for the rare gas solids, and only the Morse potential was used for the fcc metals. The thermodynamic properties obtained from the A4 equation of state with the Lennard-Jones potential, seem to be in reasonable agreement with experiment for temperatures up to about threequarters of the melting temperature. However, for the higher temperatures, the results are less than satisfactory. For Xe and Kr, the thermodynamic properties calculated from the A2 equation of state with the Morse potential, are qualitatively similar to the A 2 results obtained with the Lennard-Jones potential, however, the properties obtained from the A4 equation of state are in good agreement with experiment, since the contribution from the A4 terms seem to be small. The lattice contribution to the thermal properties of the fcc metals was calculated from the A4 equation of state, and these results produced a slight improvement over the properties calculated from the A2 equation of state. In order to compare the calculated specific heats and bulk moduli results with experiment~ the electronic contribution to thermal properties was taken into account~ by using the free electron model. We found that the results varied significantly with the value chosen for the number of free electrons per atom.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have presented a Green's function method for the calculation of the atomic mean square displacement (MSD) for an anharmonic Hamil toni an . This method effectively sums a whole class of anharmonic contributions to MSD in the perturbation expansion in the high temperature limit. Using this formalism we have calculated the MSD for a nearest neighbour fcc Lennard Jones solid. The results show an improvement over the lowest order perturbation theory results, the difference with Monte Carlo calculations at temperatures close to melting is reduced from 11% to 3%. We also calculated the MSD for the Alkali metals Nat K/ Cs where a sixth neighbour interaction potential derived from the pseudopotential theory was employed in the calculations. The MSD by this method increases by 2.5% to 3.5% over the respective perturbation theory results. The MSD was calculated for Aluminum where different pseudopotential functions and a phenomenological Morse potential were used. The results show that the pseudopotentials provide better agreement with experimental data than the Morse potential. An excellent agreement with experiment over the whole temperature range is achieved with the Harrison modified point-ion pseudopotential with Hubbard-Sham screening function. We have calculated the thermodynamic properties of solid Kr by minimizing the total energy consisting of static and vibrational components, employing different schemes: The quasiharmonic theory (QH), ).2 and).4 perturbation theory, all terms up to 0 ().4) of the improved self consistent phonon theory (ISC), the ring diagrams up to o ().4) (RING), the iteration scheme (ITER) derived from the Greens's function method and a scheme consisting of ITER plus the remaining contributions of 0 ().4) which are not included in ITER which we call E(FULL). We have calculated the lattice constant, the volume expansion, the isothermal and adiabatic bulk modulus, the specific heat at constant volume and at constant pressure, and the Gruneisen parameter from two different potential functions: Lennard-Jones and Aziz. The Aziz potential gives generally a better agreement with experimental data than the LJ potential for the QH, ).2, ).4 and E(FULL) schemes. When only a partial sum of the).4 diagrams is used in the calculations (e.g. RING and ISC) the LJ results are in better agreement with experiment. The iteration scheme brings a definitive improvement over the).2 PT for both potentials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have calculated the equation of state and the various thermodynamic properties of monatomic fcc crystals by minimizing the Helmholtz free energy derived in the high temperature limit for the quasiharmonic theory, QH, and the lowest-order (cubic and quartic), 'A2, anharmonic terms of the perturbation theory, PT. The total energy in each case is obtained by adding the static energy. The calculation of the thermal properties was carried out for a nearest-neighbour central-force model of the fcc lattice by means of the appropriate thermodynamic relations. We have calculated the lattice constant, the thermal expansion, the coefficient of volume expansion, the specific heat at constant volume and at constant pressure, the isothermal and adiabatic bulk moduli, and the Griineisen parameter, for the rare-gas solids Kr and Xe, and gold. Morse potential and modified Morse potential were each used to represent the atomic interaction for the three fcc materials. For most of the calculated thermodynamic properties from the QH theory, the results for Kr and Xe with the modified Morse potential show an improvement over the results for the Morse potential when compared with the experimental data. However, the results of the 'A 2 equation of state with the modified Morse potential are in good agreement with experiment only in the case of the specific heat at constant volume and at constant pressure. For Au we have calculated the lattice contribution from the QH and 'A 2 PT and the electronic contribution to the thermal properties. The electronic contribution was taken into account by using the free electron model. The results of the thermodynamic properties calculated with the modified Morse potential were similar to those obtained with the Morse potential. U sing the minimized equation of state we also calculated the Mossbauer recoilless fraction for Kr and Xe and the Debye-Waller factor (DWF) for Pb, AI, eu, Ag, and Au. The Mossbauer recoilless fraction was obtained for the above two potentials and Lennard-Jones potential. The L-J potential gives the best agreement with experiment for Kr. No experimental data exists for Xe. At low temperature the calculated DWF results for Pb, AI, and eu show a good agreement with experimental values, but at high temperature the experimental DWF results increase very rapidly. For Ag the computed values were below the expected results at all temperatures. The DWF results of the modified Morse potential for Pb, AI, eu and Ag were slightly better than those of the Morse potential. In the case of Au the calculated values were in poor agreement with experimental results. We have calculated the quasiharmonic phonon dispersion curves for Kr, Xe, eu, Ag, and Au. The calculated and experimental results of the frequencies agree quite well for all the materials except for Au where the longitudinal modes show serious discrepancies with the experimental results. In addition, the two lowest-order anharmonic contributions to the phonon frequency were derived using the Green's function method. The A 2 phonon dispersion curves have been calculated only for eu, and the results were similar to those of the QH dispersion curves. Finally, an expression for the Griineisen parameter "( has been derived from the anharmonic frequencies, and calculated for these materials. The "( results are comparable with those obtained from the thermodynamic definition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of a diurnal sine-wave temperature cycle (250 +- 5° C) on the wa terI-e etc r o1 yt est a t us 0 f gol df1' Sh , Carassius auratus, was assessed through determination of Na+, K+, Mg2+, Ca2+, Cl- and water content in plasma, Red blood cells and muscle tissue. Animals were also acclimated to o 0 0 static temperatures (20 C, 25 c, 30 C) corresponding to the high, low and mid-ooint temperatures of the cycle. All groups were sampled at 03:00, 09:00, 15:00 and 21:00 hr. Hemoglobin content and packed cell volume, as well as electrolyte and 'water levels were determined for each animal and red cell ion concentrations and ion : hemoglobin ratios estimated. Cycled animals were distinct from those at constant temperatures in several respects. Hematological parameters were elevated above those of animals at constant temperature and were, on a diurnal basis, more stable. Red blood cell electrolyte levels varied in an adaptively appropriate fashion to cycle temperatures. This was not the case in the constant temperature groups_ Under the cycling regime, plasma ion levels were more diurnally stable than those of constant temperature fish. Although muscle parameters in cycled fish exhibited more fluctuation than was observed in plasma, these also tended to be relatively more stable than was the caseErythrocytic data are discussed in terms of their effects on hemoglobin-oxygen affinity while plasma and muscle observations were considered from the standpoint of overall water-electrolyte balance. In general, cycled fish appeared to be capable of stabilizing overall body fluid composition, while simultaneously effecting adaptively-appropriate modifications in the erythrocytic ionic microenvironment of hemoglobin. The sometimes marked diurnal variability of water-electrolyte status in animals held at constant temperature as opposed to the conservation of cycled fish suggests that this species is, in some fashion, programmed for regulation in a thermally-fluctuating environment. If this interpretation is valid and a phenomenon of general occurrence, some earlier studies involving constant acclimation of eurythermal species normally occupying habitats which vary in temperature on a daily basis may require reconsideration. at constant temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molec ul ar dynamics calculations of the mean sq ua re displacement have been carried out for the alkali metals Na, K and Cs and for an fcc nearest neighbour Lennard-Jones model applicable to rare gas solids. The computations for the alkalis were done for several temperatures for temperature vol ume a swell as for the the ze r 0 pressure ze ro zero pressure volume corresponding to each temperature. In the fcc case, results were obtained for a wide range of both the temperature and density. Lattice dynamics calculations of the harmonic and the lowe s t order anharmonic (cubic and quartic) contributions to the mean square displacement were performed for the same potential models as in the molecular dynamics calculations. The Brillouin zone sums arising in the harmonic and the quartic terms were computed for very large numbers of points in q-space, and were extrapolated to obtain results ful converged with respect to the number of points in the Brillouin zone.An excellent agreement between the lattice dynamics results was observed molecular dynamics and in the case of all the alkali metals, e~ept for the zero pressure case of CSt where the difference is about 15 % near the melting temperature. It was concluded that for the alkalis, the lowest order perturbation theory works well even at temperat ures close to the melting temperat ure. For the fcc nearest neighbour model it was found that the number of particles (256) used for the molecular dynamics calculations, produces a result which is somewhere between 10 and 20 % smaller than the value converged with respect to the number of particles. However, the general temperature dependence of the mean square displacement is the same in molecular dynamics and lattice dynamics for all temperatures at the highest densities examined, while at higher volumes and high temperatures the results diverge. This indicates the importance of the higher order (eg. ~* ) perturbation theory contributions in these cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A ~si MAS NMR study of spin-lattice relaxation behaviour in paramagnetic-doped crystalline silicates was undertaken, using synthetic magnesium orthosilicate (forsterite) and synthetic zinc orthosilicate (willemite) doped with 0.1% to 20% of Co(II), Ni(II), or CU(II), as experimental systems. All of the samples studied exhibited a longitudinal magnetization return to the Boltzmann distribution of nuclear spin states which followed a stretched-exponential function of time: Y=exp [- (tjTn) n], Olattice relaxation time and paramagnetic dopant ion concentration, with Tni[M2+]i=Tnj[M2+]j for a given dopant and mineral. There are many cases where this correlation is not apparent, however, and this is attributed to the structural, phase, and ion distribution complexities inherent in many of these systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date there is no documented procedure to extrapolate findings of an isometric nature to a whole body performance setting. The purpose of this study was to quantify the reliability of perceived exertion to control neuromuscular output during an isometric contraction. 21 varsity athletes completed a maximal voluntary contraction and a 2 min constant force contraction at both the start and end of the study. Between pre and post testing all participants completed a 2 min constant perceived exertion contraction once a day for 4 days. Intra-class correlation coefficient (R=O.949) and standard error of measurement (SEM=5.12 Nm) concluded that the isometric contraction was reliable. Limits of agreement demonstrated only moderate initial reliability, yet with smaller limits towards the end of 4 training sessions. In conclusion, athlete's na"ive to a constant effort isometric contraction will produce reliable and acceptably stable results after 1 familiarization sessions has been completed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A young African American girl peers through a lattice window in an unknown photographer's studio in this small black and white tintype. The girl in the photo is unidentified. There are slight scratches on the surface of the tintype, which is cut in a hexagonal shape. This tintype was in the possession of Iris Sloman Bell, of St. Catharines, Ontario. The Sloman - Bell families have relatives who are descended from Black slaves from the United States."Tintypes were the invention of Prof. Hamilton Smith of Ohio. They begin as thin sheets of iron, covered with a layer of black paint. This serves as the base for the same iodized collodion coating and silver nitrate bath used in the ambrotype process. First made in 1856, millions were produced well into the twentieth century. When tintypes were finished in the same sorts of mats and cases used for ambrotypes, it can be almost impossible to distinguish which process was used without removing the image to examine the substrate." Source: American Museum of Photography http://www.photographymuseum.com/primer.html